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Abstract. In human-human communication we use
verbal, vocal and non-verbal signals to communicate
with others. Facial expressions are a form of non-
verbal communication, recognizing them helps to im-
prove the human-machine interaction. This paper
proposes a system for pose- and illumination-invariant
recognition of facial expressions using near-infrared
camera images and precise 3D shape registration. Pre-
cise 3D shape information of the human face can
be computed by means of constrained local models
(CLM), which fits a dense model to an unseen im-
age in an iterative manner. We used a multi-class
SVM to classify the acquired 3D shape into different
emotion categories. Results surpassed human perfor-
mance and show pose-invariant performance. Vary-
ing lighting conditions can influence the fitting pro-
cess and reduce the recognition precision. We built
a near-infrared and visible light camera array to test
the method with different illuminations. Results shows
that the near-infrared camera configuration is suitable
for robust and reliable facial expression recognition
with changing lighting conditions.

Keywords: Emotion Recognition, 3D Face Tracking,
Near Infrared Camera, Constrained Local Models

1. Introduction

Nowadays robotic systems are becoming more and
more complex and the need for communication between
humans and artificial systems is growing. Intelligent sys-
tems [18] are able to recognize [20, 26], track [28, 31] and
support people [27], however when important information
has to be communicated, we feel that personal presence is
obligatory, because beyond verbal there are many other
communication channels in operation.

Facial expressions are a form of non-verbal communi-
cation; it is an outward reflection of a person’s emotional
condition. Recognizing these expressions helps us to es-
timate the emotional state of a person.

In the last decade many approaches have been proposed
for this problem (see [35] and references therein). Most
of the existing methods require frontal faces with mini-
mal head rotations or working with texture information
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[2,4,10,17,19,33]. Recently, high quality facial expres-
sion recognition algorithms have been introduced. These
algorithms make use of textural information [5, 23]. How-
ever, texture information may be prone to changes intro-
duced by the pose, not to mention light conditions.

Markerless three dimensional motion tracking [1, 11,
21] is still difficult as the motion parameters have to be
extracted from a 2D image sequence. The rigid (head
motion) and non-rigid (expressions) motion of the head
are combined in video images, therefore it is necessary to
separate these [34].

Optic flow based feature point tracking has been used
for object tracking extensively [8,13,14]. However,
tracking faces while displaying expressions influences the
efficiency: during facial expressions structures (and there-
fore the tracked landmarks) appear/disappear on the face
(wrinkles, teeth).

We are experiencing a breakthrough in this field due
to the advance of learning algorithms, most notably the
advance of Constrained Local Models (CLM) [7, 30].

The main contribution of this paper is a system for
pose- and illumination-invariant recognition of facial ex-
pressions using near-infrared cameras and 3D shape in-
formation only. We built a camera array that can record
high quality images in the visible light and near-infrared
domains and we compared the perfomance in these two
domains. We found a considerable advantage for the near-
infrared images both in the head pose estimation task and
in the CLM fitting task. The proposed method is pose
invariant and works in real-time, making the use of the
system for real-life applications suitable.

This paper is organized as follows: in Section 2 we will
introduce and talk about the concept of emotion recog-
nition and facial feature extraction. Section 3 describes
the experimental setup for the synchronized near-infrared
and visible light image capturing. Section 4 introduces
the collected dataset and other expert annotated databases
used in this research. Section 5 shows experimental re-
sults and we conclude in Section 6 with a discussion.

2. Theory

2.1. Facial Expressions

Facial expressions result from one or more motions or
positions of the muscles of the face. These movements
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convey the emotional state of the individual to observers.
Facial expressions are a form of nonverbal communica-
tion. They are a primary means of conveying social infor-
mation among humans, but also occur in other mammals
as well as some other animal species. Facial expressions
and their significance in the perceiver can, to some extent,
vary between cultures.

The focus of our interest is the facial macro-
expressions. We display these facial expressions in our
daily interactions with other people all the time, when
we don’t want to conceal our emotions. Usually they last
from second to 4 seconds. There are seven universal fa-
cial expressions [9], which are present in every culture.
These are anger, contempt, disgust, surprise, fear, happi-
ness and sadness.

To describe these emotions Ekman et al. proposed an
anatomically oriented coding scheme, the Facial Action
Coding System (FACS)[9]. This system is based on the
definition of action units (AUSs) of a face that cause facial
movements. Each action unit may correspond to several
muscles that together generate a certain facial action. As
some muscles give rise to more than one action unit, cor-
respondence between action units and muscle units is only
approximate. 46 AUs were considered responsible for ex-
pression control and 12 for gaze direction and orientation.

2.2. Constrained Local Models

Constrained Local Models are generative parametric
models for person-independent face alignment. They ap-
ply region templates and use fast gradient algorithms in
order to optimize them. The shape model of a 3D CLM,
for example, is defined by a 3D mesh and in particular the
3D vertex locations of the mesh. Consider shape of a 3D
CLM as the coordinates of N 3D vertices that make up the
mesh:

T
8 = (X1,Y1,21,X2,Y2,225 -+, XN, YN+ ZN) " - (1

This model allows linear shape variation: the shape s
can be expressed as a base shape sg plus a linear combi-
nation of m shape vectors s; € R*™ (i =1,...,m):

m
s=s0+ Y pisi. )
i=1

where the the coefficients p; are the shape parameters
and we assume that the vectors s; are orthonormal.

The shape models are normally computed from hand
annotated training images. The standard approach is to
apply Principal Component Analysis (PCA) to the train-
ing meshes [6]. The base shape s is the mean shape and
the vectors s; are the m eigenvectors corresponding to the
m largest eigenvalues. Before applying PCA we can nor-
malize the meshes using a Procrustes analysis [16] to re-
move variation due to a chosen global shape normalising
transformation. Therefore the resulting PCA is only con-
cerned with local, non-rigid shape deformation.

In our work, we used the 3D CLM method [30] which
fits its model to an unseen image in an iterative manner
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by generating templates using the current parameter esti-
mates, correlating the templates with the target image to
generate response images and optimizing the shape pa-
rameters so as to maximize the sum of responses. The
interested reader is referred to [7] and [30] for the details
of the CLM algorithm. We note that the 3D CLM of [30]
is using 6 rigid and 24 non-rigid parameters , where the
non-rigid parameters are determined by principal compo-
nent analysis (PCA) by starting from 66 marker points
(also called landmarks), i.e., from 3*66=198 dimensions.

2.3. Multi-class Support Vector Machine for Emo-
tion Classification

Support Vector Machines (SVMs) are very powerful for
binary and multi-class classification as well as for regres-
sion problems. They are robust against outliers. For two-
class separation, SVM estimates the optimal separating
hyper-plane between the two classes by maximizing the
margin between the hyper-plane and closest points of the
classes. The closest points of the classes are called sup-
port vectors; they determine the optimal separating hyper-
plane, which lies at half distance between them.

We are given sample and label pairs (x¥),y*)) with
x®) e Rm y®) € {—1,1}, and k = 1,...,K. Here, for class
1 (class 2) y(k) =1 (y(k) = —1). Assume further that we
have a set of feature vectors @(= [¢1;...;0um]) : R" —
RM | where M might be infinite. The support vector clas-
sification seeks to minimize the cost function

.1 7 &
= CE i 3
%EZW w—+ i:lﬁ 3)

YOW () +b) > 1-&,& > 0. @)

In this study we used the LIBSVM software [3] We
used multi-class classification, where decision surfaces
are computed for all class pairs, i.e., for k classes one
has k(k — 1) /2 decision surfaces and then applies a vot-
ing strategy for decisions. Multi-class SVM is considered
competitive to other SVM methods [3], but in this case
we found very little differences if any when compared it
with one-against all procedures. In all cases, we used only
linear classifiers.

3. Experimental Setup

First, we provide details about our Near-Infrared Imag-
ing Hardware (Section 3.1). It is followed by the details
of the Infrared-Visible Light Camera Array we used for
dataset building.

3.1. Near-Infrared Imaging Hardware

One of the main issues with CLMs is that they are sen-
sitive to appearance changes. [llumination conditions and
skin color differences from the ones found in the train-
ing dataset can influence the performance of the model.
To overcome this limitation the proposed system works in
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near infrared domain, where we have greater control over
these artifacts.

Fig. 1. Infrared-Visible Light Camera Array.

We used DragonFly2 cameras from Point Grey Re-
search [29]. This is a high-speed IEEE-1394a (FireWire)
digital camera with on-board color processing and auto
white balance functions. The imaging sensor is a Sony
1/3” progressive scan CCD with a good quantum effi-
ciency in the near infrared domain.

The color version comes with an infrared cut-off filter.
In the newer models this filter is held in place by a metal
plate that is screwed to the lens holder, therefore the re-
moval is quite simple. We replaced this filter with a Fuji
IR-76 IR-pass gelatin filter, which cuts off the entire visi-
ble light domain under 760nm.

In addition, the DragonFly2 has a DC auto-iris output
and can be used with CCTV auto-iris lenses to control the
amount of light that falls onto the CCD. Therefore with
active near infrared illumination we can use this modified
camera for near infrared imaging.

3.2. Infrared-Visible Light Camera Array for
Dataset Building

The main goal of this study is to compare the perfor-
mance of CLMs for facial expression tracking in visible
light and infrared domain. For collecting synchronized
visible light and infrared video sequences we built a dual
camera array, which can record both domains at the same
time.

The camera array contains a near infrared camera
(mentioned in the previous section) and a normal visi-
ble light DragonFly2 camera (see Figure 1) mounted 90°
angle. The input beam is splitted by a cold mirror from
ThorLabs, which transmits 85% of the infrared light (from
750nm to 1200nm) and reflects 90% of the visible light
(from 420nm to 630nm).

The cameras are connected to the same IEEE-1394 bus
and automatically synchronized to each other. The maxi-
mum deviation between them is 125 us. A sample photo
from the two cameras can be seen on Figure 2.
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Fig. 2. A sample overlapped photo from the camera array.
Left side is from the IR, right side is from the VL photo.

4. Datasets

4.1. IR-VL Face Tracking Dataset

We used the IR-VL camera array (described in the
previous Section) to build a near infrared - visible light
database for face tracking.

We recorded short video sequences (300 frames each)
of five subjects at the resolution of 640 x 480 pixel and
30 fps. The subjects were asked to perform various head
movements, including translation and rotation, without
distinctive facial expressions. Ten video sequences were
collected from each subject, the dataset contains 50-50
synchronized visible light and near-infrared sequences
overall.

A sample IR-VL sequence from the dataset can be seen
in Figure 3

Fig. 3. An example sequence recorded by the camera array.
(a) Visible Light domain (b) Near Infrared domain.
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4.2. The Karolinska Directed Emotional Faces

During the simulation we used the The Karolinska Di-
rected Emotional Faces (KDEF) [24]. This database was
created in the Karolinska Institute in Sweden to be used
for psychological and medical research purposes, particu-
larly suitable for perception, attention, emotion, memory
and backward masking experiments.

The set contains 70 individuals, each displaying 7 dif-
ferent emotional expressions (neutral, afraid, angry, dis-
gusted, happy, sad and surprised). Each expression being
photographed (twice) from 5 different angles (4900 pic-
tures in total).

The dataset is not annotated with facial landmarks.
In the experiments, the landmarks were provided by the
CLM-tracker itself.

4.3. The Oulu-Casia Near-Infrared Dataset

To compare the emotion classification in visible light
and near-infrared domain we used the Oulu-Casia Near-
Infrared Visible Light Dataset [32]. The dataset consists
of six facial expressions from 80 people, most of them are
either Finnish or Chinese.

The subjects were asked to sit in front of a camera that
captures near-infrared and visible light images at the same
time. They were asked to perform different facial expres-
sions according to a given example during the record-
ing sessions. The imaging hardware captured images at
320 x 240 pixels at 25 fps.

All of the expressions are recorded in three different
lighting conditions: strong, weak and dark illumintaions.
The dataset contains overall 2880 video sequences.

5. Experimental Results

In this section we provide details about out experi-
ments in near infrared and visible light domains. Experi-
ments on comparing the CLM based pose esimation and
CLM fitting are described in Section 5.1 and 5.2, respec-
tively. Emotion classification experiments on the Karolin-
ska Dataset are detailed in Section 5.3 and on the Oulu-
Casia Dataset in Section 5.4.

5.1. Head Pose Estimation in IR - VL

In this experiment we compared the CLM technique
performance in visible light and infrared domains as a
function of pose estimation.

We used our IR-VL Face Tracking Dataset, calculated
the facial landmarks by the CLM method and estimated
the head pose from the 3D mesh. Figure 4 shows a con-
siderable difference between the pose estimation in the
infrared and visible light domain.

Results show that the tracker performs better in the
near-infrared domain, produces less spikes in the track-
ing.
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| | | | i
50 100 150 200 250 300
Frame Number

(b)

Yaw

151

Angle [Degrees]

| | | |
50 100 150 200 250 300
Frame Number

(©)

Roll

Angle [Degrees]

i i i i i
0 50 100 150 200 250 300
Frame Number

(d)

Fig. 4. An example tracking sequence from the IR-VL
database. (a): Annotated frames from a sequence. (b-e):
Pitch/Yaw/Roll estimation. In each graph, the solid curve
depicts the visible light tracker and the dotted curve depicts
the infrared tracker.
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5.2. CLM Fitting Comparsion in IR - VL

In this experiment we compared the CLM’s perfor-
mance as a function of landmark position estimation in
visible and infrared domains. We calculated the RMSE of
the estimated landmark positions of the frontal face X\
and the tracked one x(*).

M o (f) ()2 (f) (H\y2

) 0y ) i (G =X )2+ =y )
RMSE (xV/,x\") \/ i

(5)

As illustrated in the upper subfigure of Figure 5 the
CLM tracker accumulates considerably more error in the
visible light domain than in the infrared domain.

We divided the landmarks into five groups based on
facial features (profile, eyebrow, eyes, mouth and nose
region) and calculated the average RMS error over the
whole dataset.

The bottom subfigure of Figure 5 shows the compari-
son of the RMSE in the infrared and visible light domain
by groups.

RMS Error of all Landmarks

i i i i i j
0 50 100 150 200 250 300

Frame Number
(@)
Infrared Visible Light
14 14
12 12
10 10
8 8
6 6
4 4
2 2
A PEBNE M T A PEENE M

(b)

Fig. 5. RMSE of the reconstructed landmark positions in
pixels. (a) RMSE of all landmarks from an example tracking
sequence. The solid curve depicts the visible light tracker
and the dotted curve depicts the infrared tracker. (b) RMSE
of different landmark groups: A - All landmarks / P - Profile
/ EB - Eyebrow / N - Nose / E - Eyes / M - Mouth. The
distortion was compared to a frontal face. 1 pixel error for
all landmarks corresponds to 1 RMSE unit.

Vol.0 No.0, 200x

Journal of Advanced Computational Intelligence

Robust Facial Expression Recognition using Near Infrared Cameras

We can see that certain groups (for example, eyes and
mouth region) are more stable. These landmarks have bet-
ter error surface than others.

5.3. Emotion Classification on KDEF Dataset

In this experiment we studied the performance of the
multi-class SVM using CLM method on the Karolinska
database [24] (details of the dataset are provided in Sec-
tion 4.2).

First we tracked the facial expressions with CLM
tracker and extracted the 3D positions of the facial land-
marks.

In the next step, we performed a personal mean shape
normalization [15]: we calculated an average shape for
each subject (the so called personal mean shape) and then
we computed the differences between the features of the
emotional shape and the features of this personal mean
shape. This step is important, because it removes the per-
sonal variation of the shape.

In the last step we trained a multi-class SVM using the
leave-one-subject-out cross validation method on the nor-
malized shapes. The result of the classification is shown
in Figure 6: emotions with large distortions can still be
recognized in about 85-90% of the cases, whereas more
subtle emotions are sometimes confused with others.

These recognitions rate higher than a human observer
[24] and slightly lower than the method proposed by
Lucey et al. in [22], which utilizes both shape and tex-
ture information. We note that the method in [22] works
just on frontal faces, while our shape based method works
on rotated faces also (see Figure 7). A comparison of the
different results can be seen in Figure 8.

100
80 m Afraid
W Angry
60
Disgust
40 B Happy
Neutral
20 M Sad
- Sad
0 Surprise

Disgust
Neutral

<
¥ & K F o
S &
Afraid Angry [Disgusted| Happy Sad Surprised| Neutral
Afraid 70.71 4.29 4.29 2.14 2.14 13.57 2.86
Angry 5.7 71.43 10.71 1.43 8.57 2.14 0
Disgusted 4.29 10 73.57 714 37/ 0.71 0.71
Happy 1.43 0 5.1 92.14 0.71 0 0
Sad 3.57 6.43 4.29 0.71 80 0.71 4.29
Surprised 12.86 0.71 0 0 0 85.71 0.71
Neutral 0 0 0 0 0 0 100

Fig. 6. Confusion matrix for the proposed method on the
frontal faces from the Karolinska dataset.
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Angry 5.71 73.57 10.71 1.43 8.57 0 0
Disgusted 5 11.43 73.57 2.86 5 0 2.14
Happy 3.57 0.71 4.29 88.57 2.14 0 0.71
Sad 7.86 12.14 3.57 5 70.71 0.71 0
Surprised 17.86 0.71 0 0.71 2.86 717.86 0
Neutral 0 0 0 0 0 0 100

Fig. 7. Confusion matrix for the proposed method on the
half-profile faces from the Karolinska dataset.

The complete confusion matrices for the near-infrared
and visible light images from the strong illumination sub-
set are shown in Figure 10 and 11 respectively. Emotions
with large distortions can be recognized in about 70-90%
of the cases in both domains.

100

90

80

,,,,,,,,,,, W Visible Light

,,,,,,,,,,, @ Near-Infrared

Strong Weak Dark

Angry | Disgust Fear Happy Sad Surprise | Average
NI Strong 66.15 70.77 57.81 83.08 62.5 89.23 71.59
VL Strong | 73.85 76.92 70.77 81.54 49.23 81.54 72.31

NI Weak 55.38 53.85 64.62 78.46 70.77 81.54 67.44

VL Weak 47.69 61.54 46.15 73.85 67.69 83.08 63.33
NI Dark 50.77 67.69 55.38 81.54 73.85 83.08 68.72

VL Dark 43.08 53.85 56.92 67.69 52.31 81.54 59.23

Foature | Afraid | Angry [Disgusted Happy | Sad |Surprised Neutral | Average

Human - 4303 | 7881 | 7217 | 9265 | 767 96 6264 | 7457

observer

Luceyetal. 10 |12 *| 6522 75 9474 | 100 68 96 100 | 8557
Texture

This work Shape

(rontalfaces) | o | 7071 | 7143 | 7857 | 9214 | 80 8571 | 100 | 8194

This work Shape

(haff profile) i 65 7357 | 7357 | 8857 | 7071 | 7786 | 100 | 7845

Fig. 8. Comparison of the different result on the Karolinska
dataset. The human observer values are from [12].

5.4. Emotion Recognition in Near-Infrared Domain

As we saw in Section 5.1 and 5.2, the CLM based head
pose estimation and facial landmark registration is more
precise in the near infrared domain. Also, in the pre-
vious section we showed on the Karolinska dataset that
shape based emotion classification works well in the visi-
ble light domain. To investigate further the difference be-
tween the visible light and near infrared domain, we used
the Oulu-Casia dataset for emotion recognition [32].

We characterized the dataset using the CLM tracker and
extracted the 3D landmark positions. We performed a
personal mean-shape normalization [15] on the extracted
faces and trained a multi-class SVM using the leave-one-
subject-out cross validation method on the normalized
shapes.

We performed this process on the visible light and near-
infrared images using the three illumination conditions
available in the dataset (strong, weak and dark illumina-
tion). The classification results are shown in Figure 9.
The classification rate in the near-infrared domain is more
consistent across the different illuminations than the visi-
ble light domain results.
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Fig. 9. Recognition rates of the visible light and near in-
frared images from the Oulu-Casia dataset.

H Angry

M Disgust

o Fear

B Happy

M Sad

W Surprise

Angry Disgust Fear Happy Sad Surprise

Angry 66.15 16.92 0 6.15 9.23 1.54
Disgust 12.31 70.77 3.08 462 6.15 3.08
Fear 1.56 3.13 57.81 9.38 18.75 9.38
Happy 3.08 4.62 9.23 83.08 0 0
Sad 15.63 1.56 18.75 1.56 625 0
Surprise 0 1.54 6.15 0 3.08 89.23

Fig. 10. Confusion matrix for the near-infrared images from
the strong illumination subset of the Oulu-Casia dataset.
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B Angry
M Disgust
Fear
B Happy
m Sad
Surprise
Angry Disgust Fear Happy Sad Surprise
Angry 73.85 6.15 1.54 0 16.92 1.54
Disgust 12.31 76.92 3.08 3.08 4.62 0
Fear 3.08 0 70.77 6.15 9.23 10.77
Happy 1.54 769 4.62 81.54 462 0
Sad 26.15 6.15 15.38 1.54 4923 1.54
Surprise 0 1.54 16.92 0 0 81.54

Fig. 11. Confusion matrix for the visible light images from
the strong illumination subset of the Oulu-Casia dataset.

6. Conclusion

In this paper we used a number of methods to study the
performance of shape based facial expression recognition
in near-infrared and visible light domains. In the emotion
recognition studies, we applied multi-class SVM classi-
fication [3]. We used expert annotated face databases
[24,32] as well as video sequences recorded by an IR-VL
camera array (Section 4.1). We used CLM method to ex-
tract shape data in near-infrared and visible light domains,
since it is more precise and may preserve more informa-
tion than Active Appearance models [25]. We received
high recognition rate on the Karolinska dataset [24] using
only shape information. This can be of great importance,
since shape information is robust against different head
rotations. We demonstrated this on the half-profile faces
in the Karolinska dataset.

To study the behaviour of the proposed method, we
built a camera array that can record high quality images in
the visible light and near-infrared domains. We recorded a
synchronized head tracking dataset and compared the per-
formance on the visible light and near-infrared sequences.
We found a considerable advantage for the near-infrared
images both in the head pose estimation task and in the
CLM fitting task.

To investigate the performance in different illumina-
tion conditions, we used the Oulu-Casia dataset [32]
which consists of near-infrared and visible light image
sequences recorded in various lighting conditions. We
found that the classification rate in the near-infrared do-
main is more consistent across the different illuminations
and outperforms the visible light domain results.

From the point of human-robot interaction, angle and
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illumination dependence of facial expression recognition
is of great importance. Our experiments show that the
proposed shape based recognition technique and the used
near-infrared camera configuration is suitable for robust
and reliable facial expression recognition. Our proposed
method works in real-time, making the use of the system
for real-life applications available.

Concerning future work, further improvements can be
expected by including texture [22] and temporal informa-
tion [32] in the recognition process, however pose invari-
ant texture extraction with minimal distortions is difficult.
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