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Abstract

Analysis of kinship from facial images or videos is an important problem. Prior machine learning and computer vision studies
approach kinship analysis as a verification or recognition task. In this paper, for the first time in the literature, we propose a kinship
synthesis framework, which generates smile and disgust videos of (probable) children from the expression videos (smile and
disgust) of parents. While the appearance of a child’s expression is learned using a convolutional encoder-decoder network, another
neural network models the dynamics of the corresponding expression. The expression video of the estimated child is synthesized by
the combined use of appearance and dynamics models. In order to validate our results, we perform kinship verification experiments
using videos of real parents and estimated children generated by our framework. The results show that generated videos of children
achieve higher correct verification rates than those of real children. Our results also indicate that the use of generated videos together
with the real ones in the training of kinship verification models, increases the accuracy, suggesting that such videos can be used as a
synthetic dataset. Furthermore, we evaluate the expression similarity between input and output frames, and show that the proposed
method can fairly retain the expression of input faces while transforming the facial identity.
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1. Introduction

Analysis of kin relations from facial appearance has gained
popularity in recent years. This research topic has several po-
tential applications including missing child/parent search, so-
cial media analysis, family album organization, and image an-5

notation [1]. Majority of prior studies in kinship analysis focus
on kinship verification [2, 3, 4]; given a pair of face images,
they try to identify whether these two have a kin relationship or
not. Contrarily, kinship recognition studies aim to classify the
type of kin relationship such as Father-Daughter, Mother-Son,10

etc. [5].
In addition to general appearance of face, style and appear-

ance of expressions can also be inherited. Facial expressions
of congenitally blind and deaf children with phocomelia, who
are incapable of sensing their relatives’ face by touching, are15

shown to be similar to those of their parents [6]. Moreover, [7]
reports that a blind-born son, who was abandoned by his mother
two days after birth, displays similar facial expressions with the
biological mother. Findings of [4] show that the use of expres-
sion dynamics extracted from videos together with facial ap-20

pearance leads to more accurate kinship verification compared
to employing only facial appearance. Thus, although facial ex-
pressions may comprise learned characteristics, it is clear that
they are at least partially inherited.

All of the previous studies approach the kinship analysis as25

a verification or recognition problem. They model the underly-
ing relationship between a pair of images or videos, yet, what
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these models learn is not visible to the naked eye. In this study,
for the first time in the literature, we focus on kinship synthe-
sis, and generate facial expression videos of children using the30

expression video of their parents. Kinship synthesis has several
benefits. First of all, since we synthesize videos, the heredi-
tary patterns inherited from parent to child can be observed by
humans. Observed patterns may even be useful for genetic re-
search. Secondly, there are only two kinship video/expression35

databases (UvA-NEMO Smile [8] and UvA-NEMO Disgust
databases [9]) available for automatic kinship analysis, thus,
our models can be used to create synthetic kinship videos for
further research. Lastly, with the help of our model, people
will be able to preview how their (probable) future child may40

look like, as well as seeing his/her smile/disgust expression as a
video. Therefore, if a child, whose appearance and expression
dynamics are unknown, has been missing for years, generated
videos of him/her (based on expressions of the parents) would
be better references for the search compared to pictures drawn45

by forensic artists.
This study is the very first exploration of synthesizing facial

images and expression videos for a kin relationship. By trans-
forming temporal dynamics and appearance of a given subject,
we generate a video of his/her probable children. Furthermore,50

we show that the synthesized samples can be used to improve
the state of the art in kinship verification.

We extend our previous study [10] in many ways. Along
with an extended literature, (1) we use intensity of facial action
units (AUs) instead of facial landmark displacement for both55

expression matching and learning temporal dynamics, (2) we
model the facial appearance in a holistic manner, rather than
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learning facial regions individually since a set of AUs can ef-
fectively describe the whole face during expression matching,
(3) we extend our dataset including the UvA-NEMO Disgust60

Database [9] and generate disgust videos of children in addi-
tion to their smile videos, (4) we enhance the reliability of the
kinship verification method used in our experiments, (5) we per-
form analyses to evaluate the quality of synthesized expressions
in terms of occurrence and intensity of AUs.65

2. Related Work

Most of the studies that analyze kinship from images us-
ing machine learning and computer vision aim to solve kinship
verification problem. In their pioneering study, Fang et al. [11]
employ facial features, such as skin color, position and shape70

of face parts, and histogram of gradients for kinship verifica-
tion. Following that study, a number of feature representations
for this task are proposed/evaluated such as DAISY descrip-
tors [12], Spatial Pyramid LEarning-based (SPLE) descriptors
[13], Gabor-based Gradient Orientation Pyramid (GGOP) [14],75

Self Similarity Representation (SSR) [15], semantic-related at-
tributes [16], SIFT flow based genetic Fisher vector feature (SF-
GFVF) [17], etc. Moreover, a prototype-based discriminative
feature learning (PDFL) method has been proposed [18], and
a gated autoencoder is trained to characterize the similarity be-80

tween faces of parents and children for kinship verification [19].
Metric learning has also been adopted for kinship verification
problem in various studies [1, 20, 21, 2, 22, 23, 24]. Differently,
in [25] a hierarchical representation learning framework is pre-
sented for kinship verification. In addition, multi-view hetero-85

geneous similarity learning has been proposed to learn and pre-
dict gender-unknown kin relations [26]. [27] has constructed
a topological cubic feature space by kernelized bi-directional
PCA for age-aware facial kinship verification. Furthermore, a
genetic similarity measure between child-parent pairs is learned90

in an ensemble learning framework [28].
Beside one-to-one kinship verification, a number of studies

focus on verification or recognition of kin relations in family
images [5, 29, 30, 31, 3, 32]. They predict whether a face im-
age has kin relation with multiple family members [29], classify95

given a query face image which family it belongs to [30, 31],
perform tri-subject kinship verification using the core parts of
a family including mother-father pair to verify the kinship of
child [3], recognize the exact type of kin relation in family pho-
tos [5], and employ a denoising auto-encoder based marginal-100

ized metric learning for kinship verification on families in the
wild [32]. Recently, kinship verification has also been approached
using a pair of videos rather than images, and it is shown that
the use of expression dynamics beside the appearance informa-
tion improves the verification accuracy [4]. However, no study105

so far focuses on the synthesis of kin images or videos of a
given subject.

In terms of image synthesis, convolutional neural networks
have been found to be quite successful for a number of dif-
ferent tasks. For instance, in [33] a deep fully convolutional110

neural network architecture, SegNet, for semantic pixel-wise

segmentation has been proposed. It consists of an encoder net-
work and a corresponding decoder network followed by a pixel-
wise classification layer. Decoder network maps the low res-
olution encoder feature maps to full input resolution feature115

maps for pixel-wise classification, where the output of the net-
work is the segmented input image. Similarly, in [34], convo-
lutional encoder-decoder architecture is combined with an iter-
ative learning approach for medical image segmentation. Ad-
ditionally, [35] uses a fully convolutional encoder-decoder net-120

work for contour detection. In [36], a generative up-convolutional
neural network has been proposed to re-generate images of ob-
jects for a given object style, viewpoint, and color.

In [37], a very deep fully convolutional encoding-decoding
framework has been proposed for image restoration. Its encod-125

ing network acts as a feature extractor that preserves the pri-
mary components of objects in the image while eliminating the
corruptions. Decoding network recovers the details of image
contents. The output of the network is the denoised version of
the input image. [38] designs a recurrent encoder-decoder net-130

work to synthesize rotated views of 3D objects. This model
captures long-term dependencies along a sequence of transfor-
mations with the help of the recurrent structure. Moreover, the
model proposed in [39] is a novel recurrent encoder-decoder
architecture that estimates facial landmarks from videos for se-135

quential face alignment. A different encoder-decoder architec-
ture has been proposed in [40] to modify facial attributes such
as including glasses or a hat on a given face image. In [41], a
convolutional encoder decoder architecture is proposed for one-
step time-dependent future video frame prediction.140

3. METHOD

In this paper, we propose to model relations of facial ap-
pearance and dynamics between smile/disgust expressions of
parent-child pairs, and combine them to synthesize a smile/disgust
expression of the probable/future child of a given subject. To145

generate such videos, we use a single video of reference sub-
jects as input (parent) data. To train our models, smile and dis-
gust videos of parent-child pairs are used. Our method requires
complete smile and disgust expressions that are composed of
three phases, i.e., the onset (neutral to expressive), apex, and150

offset (expressive to neutral), respectively. We focus on (en-
joyment) smile and disgust since they are frequently performed
basic facial expressions [42].

In this section, details of the proposed method are described.
The flow of the method is as follows. Dense facial landmarks155

are tracked during smile and disgust videos and are used to nor-
malize faces. Action Unit (AU) occurrences and intensities are
estimated for each frame. Using the AU intensities, the most
similar frames of parent and child videos are matched. Matched
parent-child frames are then fed as input-output pairs to a deep160

encoder-decoder network to model the relation between facial
appearances of parent-child pairs. Another network is designed
to learn the mapping between expression dynamics of parent-
child pairs based on the extracted AU intensity values over time.
Once both networks are trained, or smile/disgust dynamics of165

the most probable child (based on the model) of a given subject

2



(a) (b)

Figure 1: (a) Normalized/cropped face image, the tracked landmarks, and (b)
the defined patches on eyes & eyebrows, nose, mouth, and cheek regions for
kinship verification experiments

(reference parent) is estimated. Afterwards, dynamics of the
reference parent is transformed to that of the estimated child
by re-ordering frames of the parent video. The modified video
with smile or disgust expression has the appearance of the given170

subject but the temporal dynamics of the estimated child. Fi-
nally, video of the estimated child is obtained by transforming
the appearance (of each frame) of the modified video to child’s
appearance through the deep encoder-decoder network.

3.1. Facial Landmark Tracking and Alignment175

To normalize face images in terms of rotation and scale, and
to measure regional deformations in face, we track 1024 dense
facial landmarks as shown in Figure 1(a). To this end, we use a
state-of-the-art tracker proposed by Jeni et al. [43]. The tracker
employs a combined 3D supervised descent method [44], where180

the shape model is defined by a 3D mesh and the 3D vertex
locations of the mesh [43]. A dense parameterized shape model
is registered to an image such that its landmarks correspond to
consistent locations on the face. The accuracy and robustness
of the method for 3D registration and reconstruction from 2D185

video was validated in a series of experiments in [43].
The tracked 3D coordinates of the facial landmarks `′ =

{`′X , `′Y , `′Z} are normalized by removing the global rigid trans-
formations such as translation, rotation and scale. Since the
normalized face is frontal with respect to the camera, we ig-190

nore the depth dimension (Z) and represent each facial point
as ` = {`X , `Y }. To shape-normalize facial texture, we warp
each face image (using piecewise linear warping) so as to trans-
form the X and Y coordinates of the detected landmarks `′ onto
those of normalized landmarks `. Obtained face images are195

then scaled by setting the inter-ocular distance to 40 pixels, and
cropped around the facial boundary as shown in Figure 1. As
a result, each normalized face image (including black pixels
around facial boundary) has a resolution of 128 × 128 pixels.

3.2. Estimating Action Unit (AU) Occurrence and Probability200

To automatically code 19 facial action units we use the pre-
trained large-margin classifier of Girard et al. [45]. Using the
tracked landmarks the system registers each video frame to a
canonical view with the size of the face normalized to have an
inter-ocular distance of 100 pixels. It extracts HOG descriptors205

[46] around 49 landmarks corresponding to the eyes, eyebrows,
nose and lip regions using 64 × 64 pixel patches divided into

16 cells and 8 orientation bins. Features are normalized to have
zero mean and unit variance, and two-class linear SVMs are
used for each AU. The system provides binary values for ac-210

tion unit occurrences and their corresponding continuous out-
puts from the SVMs. Action unit probabilities are computed
based on the continuous SVM outputs with Platt scaling [47].

3.3. Learning Temporal Dynamics

While occurrence of an AU or combination of AUs in a215

frame may be an indicator of an expression, intensity of AUs
can reflect the strength of an expression. Many studies ([48,
49, 50, 51, 52]) have used classifier decision values as esti-
mates of expression intensity. Following these studies, we use
classifier posterior probabilities of existence of AUs for each220

frame as AU descriptors, which reflect the AU intensities. Let
Au,t denote the uth action unit probability estimated for frame
t. Then, each frame t is represented by aU-dimensional vector

At =

{
Au,t | u ∈ {1, 2, . . .U}

}
, where U represents the number

of AUs, whose probabilities are estimated.225

Since Au,t is a frame-based descriptor, temporal dynamics
of each AU during an expression (smile or disgust) of T frames
can be represented by aU-dimensional time series with length
of T . Note that, a few AUs are observed during smile and
disgust expressions and the remaining ones do not carry sig-230

nificant information. Therefore, we reduce the dimensionality
of A to d using PCA by retaining 90% of the variance. The
resulting reduced time series (obtained from AU probabilities
estimated from whole face) is hereafter referred to as R. The
ratio of the explained variance by each dimension (component)235

q ∈ {1, 2, . . . , d} of R is Λq. Notice that we keep all AUs to-
gether to effectively describe facial expressions, and then we
apply PCA to reduce the dimensionality.

Duration of expressions varies in length (T ). Yet, we need
to represent dynamics of varying-length smile/disgust expres-240

sions by a fixed-length descriptor since we do not employ tem-
poral models. To this end, we fit a separate pth-degree poly-
nomial to each dimension of time series R obtained from AU
descriptors of whole face. Notice that each column vector (di-
mension) of R can be considered as g(t) = yt, where ∀t ∈ L =245

{1, 2, . . .T }, and polynomials can be fit to these functions. Yet,
to fit better polynomials, we normalize t to have zero mean and
unit variance, and obtain t̄. By preserving the feature values,
our new function becomes ḡ(t̄) = yt̄. Yet, such a normalization
causes the loss of the length information. Thus, to learn the250

mapping between smile lengths of parents and children, five
length-related features are included in our feature set, namely,
length of the time series (T ), mean value of L (µL), standard
deviation of L (σL), 1 − µL, and T − µL. Although one of these
features would be sufficient, we estimate a separate length value255

(T ) from each, and use their average as the final estimation to
minimize the error. As a result, a (p + 1) . d + 5 dimensional
feature vector is obtained.

Once the features are computed, the mapping between ex-
pression dynamics of parent-child pairs is learned using a neu-260

ral network with a single hidden layer as illustrated in Figure 2.
Although temporal dynamics of a given time series may be
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Figure 2: An illustration of learning temporal dynamics

more efficiently learned by deep temporal models such as Re-
current Neural Networks (RNNs), the limited sample size of the
video pairs in the UvA-NEMO Smile and Disgust Databases do265

not allow us to use such models. To train the neural network, we
use the feature vectors obtained from parents as inputs and the
ones obtained from the corresponding children as targets. We
employ stochastic gradient descent (SGD) to train our network
with a learning rate of 0.05. During the synthesis phase, we es-270

timate the coefficients of d distinct polynomials along with the
length (T ) of the time series. Using these estimates, reduced
time series obtained from AU descriptors of whole face (Rchild)
for the corresponding child can be reconstructed.

3.4. Learning Appearance275

To learn an efficient appearance transformation from par-
ents’ face to that of children, we propose to remove the influ-
ence of expression differences between input (parent) and target
(child) images. To this end, we match the most similar facial
expressions of parent-child pairs (in the database) in terms of280

action units.
We use per-frame AU descriptors described in Section 3.3

to obtain a matching child frame t∗ for each video frame t of the
corresponding parent as follows:

t∗ = arg min
t′∈{1,2,3,...,T ′}

‖R
parent
t − Rchild

t′ ‖ (1)

where T ′ denotes the length (number of frames) of the child’s285

video.
Once parent-child frames are matched, these image pairs

are fed as input-output pairs to a deep convolutional network to
model the relation between facial appearances of parent-child
pairs as shown in Figure 3. Our model has an encoder net-290

work and a corresponding decoder network. The encoder net-
work contains three convolutional layers followed by a fully
connected layer. Each encoder in the encoder network applies
convolution operation using a set of filter bank. We employ
filters of 3 × 3 pixels in all convolutional layers. After con-295

volution, rectified linear unit (ReLU) is applied to the output
of the convolutional layers in order to add non-linearity to the
model. Our encoder network contains two max-pooling layers

which are applied after the second and the third convolutional
layers. We apply max-pooling with a 2 × 2 window and stride300

2 such that the output of max-pooling layer is downsampled
with a factor of 2. Max-pooling summarizes the activated neu-
rons from the previous layer and enables translation invariance
over small spatial shifts in the input image. The final layer of
the encoding network is the fully connected layer that aims to305

aggregate information obtained from all neurons from the sec-
ond max-pooling layer. The decoder network is the symmetric
of encoder network such that max-pooling layers are replaced
with max-unpooling layers. Note that, similar to the encoder
network, convolutional layers are followed by ReLU in the de-310

coder network.
A separate appearance model is learned for each of the mother-

daughter, mother-son, father-daughter, and father-son relations
using smile and disgust expressions together. For training, SGD
with a fixed learning rate of 0.01 is used, while mean squared315

error (MSE) is used as the objective function. The encoder and
decoder weights are initialized from the uniform distribution
over [−r, r] where r = 1/(W × H × U), and W is the width
and H is the height of the filter. U denotes the number of input
planes.320

3.5. Expression Synthesis

This section explains how we use the models of dynamics
and appearance to generate a smile or disgust video of the esti-
mated child of a given subject. After computing the expression
dynamics of an estimated child, we transform the dynamics of325

the parent (Rparent) to that of the estimated child (Rchild) by re-
ordering the frame sequence of the parent.

Let Iparent
sparent denote the image sequence of face of the parent,

where sparent = [1, 2, . . . ,Tparent] shows the sequence of frame
indices and Tparent is the number of frames. Recall that R is a330

time series of per-frame AU descriptors Rt with a reduced di-
mensionality of d (see Section 3.3), where the qth dimension of
Rt can be shown as Rt,q. Then, a re-ordered sequence ŝ can be
obtained ensuring that Rparent

ŝ ' Rchild
schild using Algorithm 1. Note

that the first dimension of R (Rs,q=1) can be thought as the am-335

plitude signal of the expression, since it explains the majority
of the variance of A. Thus, if the image sequence of the esti-
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Figure 3: An illustration of the convolutional encoder-decoder network that models the appearance transformation

mated child displays expressions with higher amplitudes than
that of the parent, we reduce the values of Rchild such that the
regional amplitude of the estimated child can reach only 60-340

100% of the maximum amplitude of parent’s expression. This
ratio is defined randomly (see Algorithm 1) to avoid having the
same maximum amplitude for expressions of the parent and the
estimated child. Length of Rchild is accordingly reduced using
bi-cubic interpolation to preserve the temporal dynamics such345

as speed and acceleration of change in Rchild. Afterwards, each
frame of the re-ordered image sequence Iparent

ŝ of the parent is
transformed to that of the estimated child using the learned con-
volutional model (Section 3.4) as visualized in Figure 4.

Algorithm 1 Re-ordering the frame sequence of parent so as to
display the dynamics of the estimated child

Require: Rparent of size Tparent × d
Require: Rchild of size Tchild × d
Require: Explained ratio ofA’s variance (Λq) by each dimen-

sion q ∈ {1, 2, . . . , d} of R (see Section 3.3)
Ensure: Rparent

ŝ ' Rchild
schild

1: mparent ← max(Rparent
sparent,1)

2: mchild ← max(Rchild
schild,1)

3: if mchild > mparent then
4: rate← mparent

mchild
× random([0.6 1], uniform)

5: Rchild ← rate × Rchild

6: Tchild ← brate × Tchilde

7: Rchild ← resize(Rchild s.t. Tchild × d)
8: end if
9: for i = 1→ Tchild do

10: si ← arg min
j∈{1,2,...,Tparent}

∑d

k=1
(Rchild

i,k − R
parent
j,k )2 .Λk

11: end for
12: ŝ← s

4. Database350

In order to synthesize videos of children from videos of the
corresponding parents, we employ the kinship set [4] of the
UvA-NEMO Smile [8] and Disgust [9] Databases, which are

Figure 4: Generation of the image sequence (whole face) of the estimated child

the only available kinship video databases in the literature. In
our previous study [10], we have evaluated our model solely355

on UvA-NEMO Smile Database. In the current study, to show
the generalizability of the proposed method for other facial ex-
pressions, we include an evaluation on UvA-NEMO Disgust
database. While some studies do no recognize disgust as a
universal expression due to its cultural variability [53], a large360

number of studies have shown that it is one of the six basic
emotions [42, 54, 55]. Recognizability of an expression across
cultures is not a need for synthesizing child videos from parents
videos. Our method relies on the empirical findings that disgust
and smile expressions display hereditary patterns [4, 7] which365

are aimed to be modeled in this study.
The kinship dataset has spontaneous and posed enjoyment

smiles and posed disgust expressions of the subject pairs who
have kin relationships. Ages of subjects vary from 8 to 74 years.
Videos have a resolution of 1920 × 1080 pixels at a rate of370

50 frames per second. In our experiments, spontaneous smile
video pairs and posed disgust video pairs of Mother-Daughter
(M-D), Mother-Son (M-S), Father-Daughter (F-D), and Father-
Son (F-S) relationships are used. Each of the subjects in the
database has one or two spontaneous enjoyment smiles, and375

one or two disgust expressions. By using different video com-
binations of each kin relation, 159 pairs of spontaneous smile
videos and 151 pairs of posed disgust videos are obtained. Note
that we also employ the matched frames of posed smile pairs to
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Table 1: Distribution of subject, video and matched frame pairs and number of parent videos used in our experiments

Smile Disgust

Relation
Pairs

Parent Videos
Pairs

Parent Videos
Subject Video Matched Frame Subject Video Matched Frame

Mother-Daughter 16 57 6,042 29 16 52 3,359 28
Mother-Son 12 36 4,291 21 12 42 2,257 22
Father-Daughter 9 28 3,371 16 7 16 1,150 10
Father-Son 12 38 4,564 21 11 44 2,425 21

All 49 159 18,268 87 46 151 9,191 81

model the facial appearance but the corresponding posed videos380

are not used in the test/evaluation stage. The number of subject,
video and matched frame pairs, and parent videos for each kin
relationship are given in Table 1.

5. Experiments & Results

Our method aims to synthesize smile and disgust expres-385

sions of the most probable children (rather than actual ones)
of given subjects. Based on the fact that even the appearances
of siblings, except maternal twins, are different, we cannot di-
rectly compare synthesized and real children to evaluate our
method. Thus, for a quantitative assessment, we use the esti-390

mated smiles or disgust expressions to train a spatio-temporal
kinship verification system, and evaluate our method based on
the obtained results. To this end, we employ a state-of-the-art
method proposed by Dibeklioğlu et al. [4]. The method [4] ex-
tracts Completed Local Binary Patterns from Three Orthogonal395

Planes (CLBP-TOP) features [56] from the regions eyes & eye-
brows, cheeks, and mouth to describe regional appearance over
time. Regional features are concatenated as an appearance fea-
ture vector. In [4], a set of statistical descriptors are extracted
from the displacement signals of eyelids & eyebrows, cheeks,400

and lip corners to represent temporal dynamics of expressions,
and these descriptors are combined in a dynamics feature vec-
tor. After a feature selection step, the temporal appearance and
dynamics are separately modeled by SVMs. The final verifi-
cation result is obtained through a decision level fusion. In405

the current study, we slightly modify this method by extract-
ing CLBP-TOP features from the regions of eyes & eyebrows,
nose, and mouth & cheeks (see Figure 1(b)). We also compute
LBP features for the first and the last frame of the expression
onset (i.e., neutral face and expression peak, respectively). LBP410

descriptors are extracted from 8 × 8 non-overlapping (equally-
sized) blocks on the face. In our implementation, dynamics
features are extracted from the AU-based time seriesA. A sep-
arate classifier (SVM) is modeled for each of these feature sets
(CLBP, LBP, and dynamics). A weighted SUM rule is used to415

fuse the computed posterior probabilities for the target classes
of these classifiers. Other details are kept same with those of
the original method [4].

Kinship sets of the UvA-NEMO Smile and UvA-NEMO
Disgust databases, and the generated smile/disgust expressions420

are used in our experiments. While kinship pairs are used as
positive samples, randomly selected pairs that do not have a kin
relation are used as negative samples. A separate verification
model is trained for each of the M-D, M-S, F-D, and F-S re-
lations. Each experiment is repeated 10 times so as to use a425

different random set of negative samples each time. Average
(over repeated experiments) of the obtained mean (over differ-
ent relations) correct verification rates are reported.

Our experimental protocol uses 3 different test configura-
tions. (1) Actual condition test, in which we train and test the430

system with either real or synthesized videos to obtain actual
verification performance. (2) Cross-condition test, in which we
train the system with real videos and test it with synthesized
videos or vice versa to analyze whether these real and synthe-
sized sets are related. (3) Combined test, in which we employ435

combination of real and synthesized videos to train the system.
Recall that, one of the main motivations of this work is that,
our model can be used to create a synthetic database, which can
be used for further research. Therefore, we used obtained syn-
thetic database during training to explore its significance in pro-440

viding better generalizability and better kinship verification ac-
curacy. Both kinship verification and synthesis experiments are
conducted using a two-level leave-two-pair-out cross-validation
scheme. Each time two test pairs are separated, the system is
trained and parameters are optimized using leave-two-pair-out445

cross-validation on the remaining subject pairs.
For the synthesis of facial appearance of the estimated chil-

dren, we train appearance transformation models for each kin
relationship, i.e., M-D, M-S, F-D, F-S. Degree of the polyno-
mial fitting (for temporal dynamics) is set to 5 since our prelim-450

inary experiments show that polynomial degrees lower than 5
are limited to capture subtle patterns of dynamics while higher
degrees are quite sensitive to noise, and could easily generate
infeasible smile and disgust signals with continuous exponen-
tial increase. Dynamics network is trained using all kin rela-455

tionships for smile and disgust expression separately due to the
limited number of video pairs of each kin relationship. In the
remainder of this section, the results of our kinship verification
and AU similarity experiments will be presented.

5.1. Assessment of the Synthesized Appearance460

In this experiment, we aim to assess the static appearance
quality of the synthesized faces. To this end, we solely employ
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Table 2: Accuracy (%) of using real and synthesized static appearance in kin-
ship verification

Test Set

Training Set
Smile Disgust

Real Synth. Real Synth.

Real 61.17 59.06 58.83 55.42
Synth. 58.25 62.60 55.13 58.29
Real + Synth. 64.51 65.85 61.93 62.48

LBP features extracted from the first (neutral face) and the last
frame (expressive face) of the onset phase of the expressions
(smile and disgust). Using the extracted LBP descriptors, for465

smile and disgust expressions (separately), we train three dif-
ferent kinship verification models, i.e., using real videos, using
synthesized videos, and with their combined set. Each of the
trained models are then tested on the real and synthesized sam-
ples.470

As shown in Table 2, the static appearance features extracted
from the synthesized smile videos achieve an accuracy of 62.60%
when the verification model is trained on the synthesized set,
which is about 1.4% (absolute) higher than that of the real smile
video pairs when the model is learned on real data. Differ-475

ently, training and testing the model with real disgust videos
(58.83%) and with synthesized disgust videos (58.29%) pro-
vide nearly the same verification accuracy. Furthermore, if the
system is trained on the real video pairs, only 2.5% and 2.9%
accuracy decreases are observed for the synthesized smile and480

disgust videos, respectively. All these results clearly suggest
the reliability of our proposed method. Our visual analysis also
confirms the realistic appearance of the synthesized face images
(see Figure 5(a)). Moreover, training the system by using real
and synthesized smile videos together, increases the accuracy485

for both real (3.3%) and synthesized pairs (3.2%). Under this
setting, synthesized smile videos perform 1.3% better than real
ones. Similarly, the synthesized disgust videos perform 0.5%
better than the real ones when the model is trained with real
and synthesized disgust videos. These findings show that in-490

deed the obtained synthetic data can be used to train a more
accurate kinship verification system.

5.2. Assessment of the Synthesized Dynamics

Similar to the previous experiment, we conduct cross-database
experiments using real and synthesized smile and disgust video495

pairs to evaluate the reliability of the estimated facial dynamics.
To this end, we only use dynamics features in the verification
model. As shown in Table 3, for both smile and disgust, es-
timated expression dynamics performs slightly worse than the
dynamics of real expressions when the system is trained with500

real videos. Once we use synthesized smile and disgust dynam-
ics along with the real ones to train the model, 4.9% and 4.7%
accuracy increases are obtained for real pairs compared to the
model trained using solely real samples. Moreover, synthetic
smile and disgust samples perform better than real ones when505

the model is learned on the combined data. As in the previous

Table 3: Accuracy (%) of using real and synthesized temporal dynamics in
kinship verification

Test Set

Training Set
Smile Disgust

Real Synth. Real Synth.

Real 68.35 66.92 65.49 64.69
Synth. 66.03 71.01 62.82 68.78
Real + Synth. 73.32 72.15 70.28 67.07

Table 4: Accuracy (%) of using real and synthesized temporal appearance in
kinship verification

Test Set

Training Set
Smile Disgust

Real Synth. Real Synth.

Real 68.92 66.06 66.22 63.46
Synth. 63.69 71.95 61.39 67.99
Real + Synth. 73.48 76.41 70.54 71.78

Table 5: Accuracy (%) of the combined use of static and temporal appearance
and dynamics of real and synthesized videos in kinship verification

Test Set

Training Set
Smile Disgust

Real Synth. Real Synth.

Real 76.80 74.55 72.92 70.80
Synth. 74.96 80.80 71.80 75.35
Real + Synth. 81.71 84.92 76.46 79.01

experiment, these findings show the efficacy of our method as
well as indicating the importance of using synthetic data in ad-
dition to real samples during the training of kinship verification
models.510

5.3. Combining Appearance and Dynamics

In this experiment, we first use the spatio-temporal features
(CLBP-TOP) extracted from the regions of eyes & eyebrows,
nose, and mouth (over videos) for kinship verification. We per-
form experiments using real and synthesized smile and disgust515

video pairs to evaluate the reliability of the estimated temporal
appearances. Results in Table 4 reflect that, when the system
is trained with real and synthesized videos, synthesized smile
videos perform %2.9 better compared to real smile videos while
synthesized disgust videos perform %1.2 better than the real520

disgust videos, showing that our model is capable of generating
child videos which are more similar to the parents than their
real children. We believe that, we obtain that result since child
videos are synthesized using a single parent video. Moreover,
when the system is tested with real videos, training the model525

with real and synthesized videos leads to the best verification
accuracy for smile (73.48%) and disgust (70.54%) videos. These
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Input: Parent (real)

Output: Child (synthesized)

Visualized frames of the input

Visualized frames of the output

(a) (b)

Figure 5: Samples of input (real) and output (synthesized) videos: (a) Key frames and (b) amplitude signals. Note that the expression amplitude is defined as the
first dimension of R

results also show the significance of the synthesized dataset and
support the reliability of our method.

In the final verification experiment, we combine static ap-530

pearance, temporal appearance, and temporal dynamics fea-
tures and use in the verification system to assess the full perfor-
mance of the synthesized smile and disgust videos in kinship
verification. As shown in Table 5, when the system is trained
solely on real samples, the accuracy of employing real sam-535

ples reaches 76.8% for smile, and 72.92% for disgust where
the accuracy for synthetic videos is only 2.2% and 2.1% less
for smile and disgust, respectively. Verification accuracy for
real pairs are enhanced by 4.9% (absolute) for smile and 3.5%
for disgust by including the synthesized samples in the training540

set. Moreover, synthesized videos perform better than the real
pairs under combined training. This finding suggests that the
generated videos of children may be more similar to the par-
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ents than the real ones. Next, we visually analyze the obtained
videos to validate their quality. As shown in Figure 5, obtained545

facial images look quite realistic, and the estimated smile and
disgust dynamics are meaningful. Thus, we can claim that the
proposed method works effectively and it is able to generate
smile and disgust videos of probable children of given parents.
Our obtained images are not that crispy since the architecture550

could only learn general facial patterns rather than appearance
details. We observe that, when an expression causes a signifi-
cant change in the facial appearance of parents, the correspond-
ing child frames also display a significant change in the appear-
ance as shown in Figure 5.555

Notice that, we obtain a higher kinship verification accu-
racy on the smile dataset compared to the disgust dataset, which
can be explained by the fact that: (1) there are fewer matched
frames in the disgust database to train the model, and (2) the
variability of the posed disgust expression among individuals is560

much higher compared to that of smiles.
We compare the kinship verification accuracy values ob-

tained using facial landmarks [10] and AU intensities during ex-
pression matching and synthesis of dynamics on smile database
in Figure 6. We perform kinship verification experiments using565

real frames, synthesized frames or their combination as training
set and testing with real or synthesized frames. Moreover, we
compare the results obtained with static appearance, temporal
dynamics and their combination. Results reflect that, when only
static appearance features are employed, we obtain the lowest570

verification accuracy and using facial landmarks performs bet-
ter compared to using AU intensity during expression matching
and synthesis. On the other hand, when temporal dynamics and
combination of appearance and dynamics are employed, using
AU intensity outperforms facial landmarks. We can infer that,575

among all configurations, using AU intensity in the architecture
and employing combination of static appearance and temporal
dynamics in verification experiments leads to the best accuracy.

Note that, when landmarks are used, expression matching
is performed using the local landmarks around mouth, nose and580

eye & eyebrow regions separately. Since a set of AUs can effec-
tively describe the whole face, employing AU intensities during
expression matching leads to a more accurate analysis.

5.4. Analysis of AU Occurrences
In order to identify the most frequent AUs appearing in the585

parents’ smile and disgust videos, we compute base rates aver-
aged over all input parent videos. The base rate of an AU equals
the ratio of the number of frames containing the corresponding
AU to the total number of tracked frames. In Table 6, we high-
light four rows containing the AUs with the highest base rates590

for the smile and disgust datasets, separately. Please see Fig-
ure 7 for the visualization of these AUs.

The results reported in Table 6 show that the most frequent
AUs displayed in smile videos are AU6, AU7, AU10, and AU12.
This outcome is consistent with the finding that enjoyment smiles595

contain AU6 and AU12. On the other hand, the most frequent
AUs which appear in disgust videos are AU6, AU7, AU17, and
AU23, while the disgust expression is expected to contain AU9,
AU15, and AU16 (note that AU16 is not tracked by our system).

Figure 6: Comparison of using facial landmarks and AU intensity values in
kinship verification experiments performed with smile videos. R denotes real
frames, S denotes synthesized frames and R+S denotes combination of real and
synthesized frames.

From Table 6 we can see that AU9 and AU15 occurrences are600

observed with relatively low base rates. Since the disgust videos
are posed, the variability of facial surface deformations during
these videos is quite high among different parents. Therefore,
AU9 and AU15 in the disgust videos are not displayed as fre-
quently as AU6 and AU12 in the smile videos. When we com-605

pare the highest base rates of AU occurrences for smile and
disgust videos, we can see that the base rates of AU6 and AU12
observed in smile videos are much higher than those of AU7,
AU17 and AU23 observed in disgust videos.

5.5. Assessment of AU similarity610

We match expressions of kin pairs using AU probabilities
since intensities of a set of AUs can effectively describe facial
expressions. As a result, the input (parent) and output (child)
images of the appearance network should have similar facial ex-
pressions. Thus, based on the fact that the appearance network615

would tend to learn more frequent expressions better, we would
expect a higher reliability for the expressions that have higher
(occurrence) base rates in the database. Therefore, if a parent
(input) frame contains a frequently displayed AU, it should also
be observed in the (corresponding) synthesized child frame. In620

order to evaluate the expression similarity between input-output
pairs, we employ the automatically coded probabilities of 19
AUs. For each AU u, we compute the normalized f-scores us-
ing the AU occurrence vector (Oparent

u ) of the frames of parent
and AU occurrence vector (Ôchild

u ) of the corresponding frames625

of generated child. Since the base rate of each AU are differ-
ent, and AU occurrences are skewed in our dataset, we compute
the normalized f-score [57]. The normalized f-score represents
the f-score value that would be obtained if the data (AU occur-
rences) were balanced. After obtaining normalized f-score val-630

ues for each video, we compute average f-score values over all
smile and disgust videos in the dataset, separately (see Table 6).

Estimates of AU occurrences may be noisy. For instance,
an AU with a probability of 0.49 is labelled as not occurred
while the one with a probability of 0.51 is labelled as occurred.635

Therefore, AU probabilities can provide more detailed infor-
mation compared to the sole use of AU occurrences. Thus, we
also compute the Pearson correlation coefficients between AU

9



(a) AU6 (b) AU7 (c) AU10 (d) AU12 (e) AU17 (f) AU23

Figure 7: Action Units having the highest base rates in our smile and disgust datasets. Images are from CK+ dataset, c©Jeffrey Cohn.

Table 6: Base rates (%) of AU occurrences, f-scores and correlations computed using the AU probabilities of “real parent”-“synthesized child” pairs. AUs with the
highest base rates are highlighted for smile and disgust datasets.

AU
Smile

AU
Disgust

Base Rate (%) f-score Corr Base Rate (%) f-score Corr
1 1.23 0.01 0.01 1 1.34 0.00 0.07
2 22.39 0.05 0.00 2 11.16 0.04 0.08
4 12.71 0.00 -0.01 4 48.38 0.11 0.20
5 7.80 0.00 0.15 5 4.34 0.00 0.32
6 82.99 0.55 0.48 6 59.24 0.49 0.57
7 88.25 0.41 0.22 7 73.23 0.47 0.37
9 9.89 0.02 0.06 9 41.89 0.14 0.31

10 71.10 0.30 0.45 10 29.07 0.16 0.48
11 53.61 0.26 0.14 11 32.83 0.25 0.40
12 87.22 0.56 0.55 12 48.23 0.44 0.54
14 11.46 0.01 0.05 14 6.27 0.02 0.04
15 6.26 0.00 0.06 15 34.08 0.09 0.17
17 49.23 0.36 0.26 17 71.64 0.29 0.12
18 0.90 0.00 0.28 18 4.53 0.08 0.24
19 38.46 0.31 0.09 19 52.73 0.39 0.10
22 2.60 0.01 0.14 22 9.46 0.02 0.04
23 57.78 0.45 0.15 23 61.68 0.44 0.10
24 31.97 0.41 0.11 24 39.60 0.30 -0.01
28 28.41 0.21 0.13 28 42.30 0.24 0.07

probabilities of (real) parent and (synthesized) child frame se-
quences.640

From f-score values and correlation coefficients reported in
Table 6, we can infer that our model is more successful to learn,
represent, and synthesize AU6 and AU12 compared to other
AUs for smiles. In other words, for a parent frame containing
these AUs, our model is likely to generate a child frame having645

the same AUs. Notice that, for AU1, AU4, AU5, AU9, AU14,
AU15, AU18, and AU22, the obtained f-score values and cor-
relation coefficients are quite low because these AUs are very
rare in the input (parent) videos.

While AU2, AU11, AU19, AU24, and AU28 are fairly ob-650

served in the dataset, f-score values and correlation coefficients
for these AUs are not comparable with those of AU6, AU7,
AU10, AU12. This can be explained based on the fact that AU6,
AU7, AU10, and AU12 are displayed in most frames and, thus,
they can be modeled much more effectively. For AU7, the most655

frequently displayed AU in the smile videos, we obtain lower
f-score compared to AU6 and AU12, meaning that our model
cannot learn to capture and/or synthesize AU7 as good as AU6
and AU12.

When we analyze the results for the disgust expression, it660

is seen that the highest f-scores are obtained for AU6, AU7,
and AU23 (see Table 6). Notice that, these AUs are among
the most frequently observed ones in the disgust dataset. On

the other hand, the highest correlations are obtained for AU6,
AU10, and AU12. Although the AUs accounting for the disgust665

expression (AU9 and AU15), are fairly observed in the disgust
dataset, their base rates are lower compared to the others so that
our model cannot learn to synthesize them well, resulting in
lower f-scores and correlations.

From the results in Table 6 we can infer that, our encoder-670

decoder architecture can effectively model and synthesize AUs
that are frequently displayed in the training data.

Moreover, the quality of the synthesized smile frames are
better compared to that of disgust in terms of the AU similarity
between input-output pairs. This outcome can be explained by675

higher variability of the posed disgust expression (compared
to that of smiles) and by significantly less number of matched
frames for disgust (see Table 1 compared to the smiles.

6. Conclusion

We have proposed a kinship synthesis framework that is ca-680

pable of generating smile and disgust videos of probable chil-
dren of given subjects. As well as synthesizing images using a
convolutional encoder-decoder architecture, we model tempo-
ral dynamics of expressions, and combine them to synthesize
videos of estimated children. We have quantitatively evaluated685

our synthesized videos in a set of kinship verification and AU
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similarity experiments. Our results suggest that (1) the pro-
posed appearance network can conserve the facial expressions
(in terms of AUs) of the input frames while transforming the
facial identity; (2) enhancing training set with synthetic data690

increases the kinship verification performance; and (3) our pro-
posed method can indeed generate realistic child videos that
may even be more similar to the corresponding parent than the
real child.

As a future work, we aim to evaluate our method on other695

facial expressions. Due to data limitations, our models rely
solely on the data of a single parent for the synthesis of the prob-
able child. In case of having sufficient data, a further research
direction would be to change our network architecture such that
the appearance and dynamics of the estimated child are learned700

from the videos of both mother and father. In addition, genera-
tive models such as Generative Adversarial Networks (GANs)
can be used to synthesize child appearance.
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[5] Y. Guo, H. Dibeklioğlu, L. van der Maaten, Graph-based kinship recog-
nition, in: ICPR, 2014, pp. 4287–4292.

[6] I. Eibl-Eibesfeldt, Human Ethology, Aldine de Gruyter, New York, 1989.
[7] G. Peleg, G. Katzir, O. Peleg, M. Kamara, L. Brodsky, H. Hel-Or,

D. Keren, E. Nevo, Hereditary family signature of facial expression,720

PNAS 103 (43) (2006) 15921–15926.
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