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Abstract— By systematically varying the number of subjects
and the number of frames per subject, we explored the influence
of training set size on appearance and shape-based approaches
to facial action unit (AU) detection. Digital video and expert
coding of spontaneous facial activity from 80 subjects (over
350,000 frames) were used to train and test support vector ma-
chine classifiers. Appearance features were shape-normalized
SIFT descriptors and shape features were 66 facial landmarks.
Ten-fold cross-validation was used in all evaluations. Number
of subjects and number of frames per subject differentially af-
fected appearance and shape-based classifiers. For appearance
features, which are high-dimensional, increasing the number
of training subjects from 8 to 64 incrementally improved
performance, regardless of the number of frames taken from
each subject (ranging from 450 through 3600). In contrast, for
shape features, increases in the number of training subjects
and frames were associated with mixed results. In summary,
maximal performance was attained using appearance features
from large numbers of subjects with as few as 450 frames per
subject. These findings suggest that variation in the number of
subjects rather than number of frames per subject yields most
efficient performance.

I. INTRODUCTION

The face is an important avenue of emotional expression
and social communication [10, 15]. Recent studies of facial
expression have revealed striking insights into the psychol-
ogy of affective disorders [17], addiction [18], and inter-
group relations [12], among other topics. Numerous applica-
tions for technologies capable of analyzing facial expressions
also exist: drowsy-driver detection in smart cars [11], smile
detection in consumer cameras [6], and emotional response
analysis in marketing [25, 34] are just some possibilities.

Given the time-consuming nature of manual facial ex-
pression coding and the alluring possibilities of the afore-
mentioned applications, recent research has pursued com-
puterized systems capable of automatically analyzing facial
expressions. The predominant approach adopted by these
researchers has been to locate the face and facial features
in an image, derive a feature representation of the face, and
then classify the presence or absence of a facial expression
in that image using supervised learning algorithms.

The majority of previous research has focused on devel-
oping and adapting techniques for feature representation and
classification [for reviews, see 2, 5, 36, 40]. Facial feature
representations tend to fall into one of two categories: shape-
based approaches focus on the deformation of geometric
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meshes anchored to facial landmark points (e.g., the mouth
and eye corners), while appearance-based approaches focus
on changes in facial texture (e.g., wrinkles and bulges).
Classification techniques have included supervised learning
algorithms such as neural networks [35], support vector
machines [24], and hidden Markov models [37].

Conversely, very few studies have explored techniques for
building training sets for supervised learning. In particular,
most researchers seem to ignore the question of how much
data to include in their training sets. However, several studies
from related fields suggest that training set size may have
important consequences. In a study on face detection, Osuna
et al. [27] found that larger training sets required more
time and iterations to converge and produced more complex
models (i.e., more support vectors) than smaller training sets.
In a study on object detection, Zhu et al. [42] found the
counter-intuitive result that larger training sets sometimes led
to worse classification performance than smaller training sets.
Research is needed to explore these issues within automated
facial expression analysis.

A great amount of effort has also gone into the creation
of public facial expression databases. Examples include the
CK+ database [23], the MMI database [28], the BINED
database [32], and the BP4D-Spontaneous database [41]. Al-
though the collection and labeling of a high quality database
is highly resource-intensive, such efforts are necessary for
the advancement of the field because they enable techniques
to be compared using the same data.

While the number of subjects in some of these databases
has been relatively large, no databases have included both a
large number of subjects and large number of training frames
per subject. In part for this reason, it remains unknown how
large databases should be. Conventional wisdom suggests
that bigger is always better, but the aforementioned object
detection study [42] raises doubt about this conventional
wisdom. It is thus important to quantify the effects of training
set size on the performance of automated facial expression
analysis systems. For anyone involved in the training of
classifiers or the collection of facial expression data, it would
be useful to know how much data is required for the training
of an automated system and at what point the inclusion
of additional training data will yield diminishing returns or
even counter-productive results. Databases that are limited
or extreme in size may be inadequate to evaluate classifier
performance. Without knowing how much data is optimal,
we have no way to gauge whether we need better features
and classifiers or simply better training sets.

The current study explores these questions by varying



the amount of training data fed to automated facial ex-
pression analysis systems in two ways. First, we varied
the number of subjects in the training set. Second, we
varied the number of training frames per subject. Digital
video and expert coding of spontaneous facial activity from
80 subjects (over 350,000 frames) was used to train and
test support vector machine classifiers. Two types of facial
feature representations were compared: shape-based features
and appearance-based features. The goal was to detect twelve
distinct facial actions from the Facial Action Coding System
(FACS) [9]. After presenting our methods and results, we
offer recommendations for future data collections and for
the selection of features in completed data collections.

Notations: Vectors (a) and matrices (A) are denoted by
bold letters. B = [A1; . . . ; AK ] ∈ R(d1+...+dK)×N denotes
the concatenation of matrices Ak ∈ Rdk×N .

II. METHODS

A. Subjects

The current study used digital video from 80 subjects
(53% male, 85% white, mean age 22.2 years) who were
participating in a larger study on the impact of alcohol on
group formation processes [30]. The video was collected to
investigate social behavior and the influence of alcohol; it
was not collected for the purpose of automated analysis.
The subjects were randomly assigned to groups of three
unacquainted subjects. Whenever possible, all three subjects
in a group were analyzed; however, 14 groups contributed
fewer than three subjects due to excessive occlusion from
hair or head wear, being out of frame of the camera, or
chewing gum. Subjects were randomly assigned to drink
isovolumic alcoholic beverages (n=31), placebo beverages
(n=21), or nonalcoholic control beverages (n=28); all sub-
jects in a group drank the same type of beverage.

B. Setting and Equipment

All subjects were previously unacquainted. They first met
only after entering the observation room where they were
seated equidistant from each other around a circular table. We
focus on a portion of the 36-minute unstructured observation
period in which subjects became acquainted with each other
(mean duration 2.69 minutes). The laboratory included a
custom-designed video control system that permitted syn-
chronized video output for each subject, as well as an
overhead shot of the group (Figure 1). The individual view of
each subject was used in this report. The video data collected
by each camera had a standard frame rate of 29.97 frames
per second and a resolution of 640× 480 pixels.

C. Manual FACS Coding

The Facial Action Coding System (FACS) [8, 9] is an
anatomically-based system for measuring nearly all visually-
discernible facial movement. FACS describes facial activities
in terms of unique action units (AUs), which correspond
to the contraction of one or more facial muscles. FACS is
recognized as the most comprehensive and objective means

Fig. 1. Example of the overhead and individual camera views

for measuring facial movement currently available, and it has
become the standard tool for facial measurement [4, 10].

For each subject, one of two certified FACS coders manu-
ally annotated the presence (from onset to offset) of 34 AUs
during a video segment using Observer XT software [26]. AU
onsets were annotated when they reached slight or B level
intensity. The corresponding offsets were annotated when
they fell below B level intensity. All AUs were annotated
during speech but not when the face was occluded.

Of the 34 coded AUs, twelve occurred in more than 5%
of frames and were analyzed for this report; these AUs are
described in (Table I). To assess inter-observer reliability,
video from 17 subjects was annotated by both coders. Mean
frame-level reliability was quantified with the Matthews
Correlation Coefficient (MCC) [29]. The mean MCC was
0.80, with a low of 0.69 for AU 24 and a high of 0.88
for AU 12; according to convention, these numbers can be
considered strong to very strong reliability [3].

The mean base rate (i.e., the proportion of frames during
which an AU was present) for AUs was 27.3% with a
relatively wide range. AU 1 and AU 15 were least frequent,
with each occurring in only 9.2% of frames; AU 12 and
AU 14 occurred most often, in 34.3% and 63.9% of frames,
respectively. Occlusion, defined as partial obstruction of the
view of the face, occurred in 18.8% of all video frames.

D. Automated FACS Coding

1) Facial Landmark Tracking: The first step in auto-
matically detecting AUs was to locate the face and facial
landmarks. Landmarks refer to points that define the shape
of permanent facial features, such as the eyes and lips.
This step was accomplished using the LiveDriver SDK [20],
which is a generic tracker that requires no individualized
training to track facial landmarks of persons it has never
seen before. It locates the two-dimensional coordinates of 64
facial landmarks in each image. These landmarks correspond
to important facial points such as the eye and mouth corners,
the tip of the nose, and the eyebrows.

2) SIFT Feature Extraction: Once the facial landmarks
had been located, the next step was to measure the deforma-



tion of the face caused by expression. This was accomplished
using two types of features: one focused on changes in facial
texture and one focused on changes in facial shape. Separate
classifiers were trained for each type of feature.

For the texture-based approach, Scale-Invariant Feature
Transform (SIFT) descriptors [22] were used. Because sub-
jects exhibited a great deal of rigid head motion during the
group formation task, we first removed the influence of such
motion on each image. Using a similarity transformation
[33], the facial images were warped to the average pose and
a size of 128×128 pixels, thereby creating a common space
in which to compare them.

In this way, variation in head size and orientation would
not confound the measurement of facial actions. SIFT de-
scriptors were then extracted in localized regions surrounding
each normalized facial landmark. SIFT applies a geometric
descriptor to an image region and measures features that
correspond to changes in facial texture and orientation (e.g.,
facial wrinkles, folds, and bulges). It is robust to changes in
illumination and shares properties with neurons responsible
for object recognition in primate vision [31]. SIFT feature
extraction was implemented using the VLFeat open-source
library [39]. Descriptors were set to a diameter of 24 pix-
els (parameters: scale=3, orientation=0). Each video frame
yielded a SIFT feature vector with 8192 dimensions.

3) 3DS Feature Extraction: For the shape-based ap-
proach, three-dimensional shape (3DS) models were used.
Using an iterative expectation-maximization algorithm
[19], we constructed 3D shape models corresponding to
LiveDriver’s landmarks. These models were defined by the
coordinates of a 3D mesh’s vertices:

x = [x1; y1; z1; . . . ;xM ; yM ; zM ] (1)

or, x = [x1; . . . ; xM ], where xi = [xi; yi; zi]. We have
T samples: {x(t)}Tt=1. We assume that apart from scale,
rotation, and translation all samples {x(t)}Tt=1 can be ap-
proximated by means of linear principal component analysis
(PCA).

The 3D point distribution model (PDM) describes non-
rigid shape variations linearly and composes them with a
global rigid transformation, placing the shape in the image
frame:

xi = xi(p) = sR(x̄i + Φiq) + t (i = 1, . . . ,M) (2)

where xi(p) denotes the 3D location of the ith landmark and
p = {s, α, β, γ,q, t} denotes the parameters of the model,
which consist of a global scaling s, angles of rotation in
three dimensions (R = R1(α)R2(β)R3(γ)), a translation t
and non-rigid transformation q. Here x̄i denotes the mean
location of the ith landmark (i.e., x̄i = [x̄i; ȳi; z̄i] and x̄ =
[x̄1; . . . ; x̄M ]).

We assume that the priors of the parameters follow a
normal distribution with mean 0 and variance Λ at a pa-
rameter vector q: p(p) ∝ N(q; 0,Λ). We use PCA to
determine the d pieces of 3M dimensional basis vectors
(Φ = [Φ1; . . . ; ΦM ] ∈ R3M×d). Vector q represents the 3D
distortion of the face in the 3M × d dimensional subspace.

To construct the 3D PDM, we used the BP4D-Spontaneous
dataset [41]. An iterative EM-based method was used [19]
to register face images. The algorithm iteratively refines the
3D shape and 3D pose until convergence, and estimates the
rigid (s, α, β, γ, t) and non-rigid (q) transformations. The
rigid transformations were removed from the faces and the
resulting canonical 3D shapes (x̄i+Φiq in Equation 2) were
used as features for classification. Each video frame yielded
a 3DS feature vector with 192 dimensions.

4) Classification: After we extracted the normalized 3D
shape and the SIFT descriptors, we performed separate
support vector machine (SVM) [38] binary-class classifica-
tion on them using the different AUs as the class labels.
Classification was implemented using the LIBLINEAR open-
source library [13].

Support Vector Machines (SVMs) are very powerful for
binary and multi-class classification as well as for regression
problems. They are robust against outliers. For two-class
separation, SVM estimates the optimal separating hyper-
plane between the two classes by maximizing the margin
between the hyper-plane and closest points of the classes.
The closest points of the classes are called support vectors;
they determine the optimal separating hyper-plane, which lies
at half distance between them.

We used binary-class classification for each AU, where
the positive class contains all samples labeled by the given
AU, and the negative class contains every other shapes. In
all cases, we used only linear classifiers and also vary the
regularization parameter C from 2−9 to 29.

5) Cross-Validation: The performance of a classifier is
evaluated by testing the accuracy of its predictions. To ensure
generalizability of the classifiers, they must be tested on
examples from people they have not seen previously. This
is often accomplished by cross-validation, which involves
multiple rounds of training and testing on separate data.
Stratified k-fold cross-validation [16] was used to partition
subjects into 10 folds with roughly equal AU base rates. On
each round of cross-validation, a classifier was trained using
data (i.e., features and labels) from eight of the ten folds.
The classifier’s regularization parameter C was optimized
using one of the two remaining folds. The predictions of the
optimized classifier were then tested using the final fold. This
process was repeated so that each fold was used once for
testing and parameter optimization; classifier performance
was averaged over these 10 iterations. In this way, training
and testing of the classifiers were independent.

6) Scaling Tests: In order to evaluate the impact of train-
ing set size on classifier performance, the cross-validation
procedure was repeated while varying the number of subjects
included in the training set and varying the number of train-
ing frames sampled from each subject. Because each training
set was randomly sampled from eight of the ten folds, the
maximum number of subjects that could be included in a
given training set was 64 (i.e., 80 subjects × 8/10 folds). This
number was then halved three times to generate the following
vector for number of subjects: 8, 16, 32, or 64. Because some
subjects had as few as two minutes of manual coding, the
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Fig. 2. Classifier performance as a function of number of subjects in the training set

maximum number of video frames that could be randomly
sampled from each subject was 3600 (i.e., 120 seconds ×
29.97 frames per second). This number then was halved three
times to generate the following vector for number of training
frames per subject: 450, 900, 1800, 3600. A separate ‘scaling
test’ was completed for each pairwise combination of number
of subjects and number of frames per subject, resulting in a
total of 16 tests.

7) Performance Metrics: Classifier performance was
quantified using area under the curve (AUC) derived from
receiver operating characteristic analysis [14]. AUC can be
calculated from the true positive rate (TPR) and false positive
rate (FPR) of each possible decision threshold (T):

AUC =

∫ −∞
∞

TPR(T )FPR′(T )dT (3)

When its assumptions are met, AUC corresponds to the
probability that the classifier will rank a randomly chosen

positive example higher than a randomly chosen negative
example. As such, an AUC of 0.5 represents chance perfor-
mance and an AUC of 1.0 represents perfect performance.
AUC is threshold-independent and robust to highly-skewed
classes, such as those of infrequent facial actions [21].

8) Data Analysis: The influence of training set size on
classifier performance was analyzed using linear regression
[7]. Regression models were built to predict the mean cross-
validation performance (AUC) of a classifier from the num-
ber of subjects in its training set and the number of training
frames per subject. Each scaling test was used as a separate
data point, yielding 15 degrees of freedom for the regression
models.
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Fig. 3. Classifier performance as a function of number training frames per subject

III. RESULTS

A. SIFT-based Results

Using appearance-based SIFT features, mean classifier
performance (AUC) across all AUs and scaling tests was 0.85
(SD = 0.06). Mean performance across all scaling tests was
highest for AU 12 at 0.94 and lowest for AU 11 at 0.78.

As shown in Figure 2, performance greatly increased
as the number of subjects in the training set increased.
The standardized regression coefficients in Table II show
that increasing the number of subjects in the training set
significantly increased classifier performance for all AUs
(each p < .001). However, this increase was greater for
some AUs than for others. For example, performance for AU
11 increased from 0.63 to 0.94 as the training set increased
from 8 to 64 subjects (using 450 frames per subject), while
performance for AU 12 increased from 0.93 to 0.98.

As shown in Figure 3, performance did not change as
the number of training frames per subject increased. The
standardized regression coefficients in Table II show that
increasing the number of training frames per subject did not
yield a significant change in performance for any AU.

B. 3DS-based Results

Using shape-based 3DS features, mean classifier perfor-
mance (AUC) across all AUs and scaling tests was 0.86
(SD = 0.05). Mean performance across all scaling tests was
highest for AU 12 at 0.95 and lowest for AU 10 at 0.76.

As shown in Figure 2, mean performance slightly de-
creased as the number of subjects in the training set in-
creased. The standardized regression coefficients in Table III
show that increasing the number of subjects in the training
set significantly decreased classifier performance for all AUs
(each p < .05) except AU 10 and AU 12, which did not



Base Rate
AU Description MCC M SD

1 Inner brow raiser 0.82 0.09 0.10
2 Outer brow raiser 0.85 0.12 0.13
6 Cheek raiser 0.85 0.34 0.21
7 Lid tightener 0.83 0.42 0.24
10 Upper Lip Raiser 0.82 0.40 0.23
11 Nasolabial Deepener 0.85 0.17 0.24
12 Lip Corner Puller 0.88 0.34 0.20
14 Dimpler 0.82 0.65 0.21
15 Lip Corner Depresser 0.72 0.10 0.10
17 Chin Raiser 0.74 0.29 0.19
23 Lip Tightener 0.74 0.21 0.16
24 Lip Presser 0.69 0.14 0.15

TABLE I
DESCRIPTIONS, INTER-OBSERVER RELIABILITY, AND BASE RATES

(MEAN AND STD. DEV.) FOR THE ANALYZED FACS ACTION UNITS

Number of subjects Frames/subject
AU β t Sig. β t Sig.

1 0.95 11.75 <.001 -0.06 -0.76 .46
2 0.97 15.02 <.001 -0.04 -0.63 .54
6 0.99 26.64 <.001 0.01 0.28 .78
7 0.98 18.72 <.001 0.01 0.22 .83
10 0.88 7.73 <.001 -0.24 -2.08 .06
11 0.96 11.95 <.001 -0.04 -0.52 .61
12 0.96 12.35 <.001 -0.06 -0.74 .45
14 0.98 16.61 <.001 -0.06 -0.96 .36
15 0.97 14.21 <.001 -0.01 -0.13 .90
17 0.98 18.98 <.001 0.01 0.12 .90
23 0.98 17.39 <.001 0.08 1.50 .16
24 0.96 12.46 <.001 0.02 0.32 .76

TABLE II
STANDARDIZED REGRESSION COEFFICIENTS FOR PREDICTING THE

PERFORMANCE OF SIFT-BASED CLASSIFIERS

change. This reduction was most dramatic for AU 11, which
dropped from 0.84 to 0.65 as the training set increased from
8 to 64 subjects (using 450 frames per subject).

As shown in Figure 3, mean performance slightly in-
creased for some AUs as the number of training frames per
subject increased. The standardized regression coefficients in
Table III show that increasing the number of training frames
per subject significantly increased classifier performance for
AU 1, AU 10, AU 12, AU 15, and AU 17 (each p < .05). The
other seven AUs did not change as the number of training
frames per subject increased.

IV. DISCUSSION

We investigated the importance of training set size on
the performance of an automated facial expression analysis
system by systematically varying the number of subjects in
the training set and the number of training frames per subject.
Classifiers were trained using two different types of feature
representations – one based on facial shape and one based on
facial texture – to detect the presence or absence of twelve
facial action units.

Results suggest that only the number of subjects was im-
portant when using appearance (i.e., SIFT) features; specif-

Number of subjects Frames/subject
AU β t Sig. β t Sig.

1 -0.74 -4.82 <.001 0.37 2.40 <.05
2 -0.84 -5.69 <.001 0.14 0.94 .36
6 -0.68 -3.81 <.01 0.35 1.95 .07
7 -0.82 -5.96 <.001 0.27 1.94 .07
10 -0.25 -1.42 .18 0.72 4.05 <.01
11 -0.94 -10.83 <.001 0.11 1.31 .21
12 -0.26 -1.31 .21 0.65 3.27 <.01
14 -0.47 -2.23 <.05 0.44 2.07 .06
15 -0.77 -5.95 <.001 0.43 3.31 <.01
17 -0.79 -5.69 <.001 0.34 2.45 <.05
23 -0.90 -8.36 <.001 0.21 1.99 .07
24 -0.74 -4.15 <.01 0.22 1.23 .24

TABLE III
STANDARDIZED REGRESSION COEFFICIENTS FOR PREDICTING THE

PERFORMANCE OF 3DS-BASED CLASSIFIERS

ically, classification performance significantly improved for
all action units as the number of subjects in the training set
increased. This result may be due to the high dimensionality
of the SIFT features. High dimensional features allow for
the description of more variance in the data, but also require
more varied training data to do so. This explanation would
account for the finding that, on average, SIFT features
performed worse than 3DS features with 8 and 16 subjects in
the training set, but better than 3DS features with 64 subjects
in the training set.

The connection between number of subjects in the training
set and classifier performance was statistically significant
for all action units; however, it was stronger for some
action units than others. For instance, classifier performance
increased an average of 0.23 for AU 1, AU 2, AU 11, AU 15,
AU 17, and AU 23 as the number of subjects in the training
set increased from 8 to 64, whereas it only increased an
average of 0.10 for AU 6, AU 7, AU 10, AU 12, AU 14,
and AU 24. This result may be because the former group
of action units are more varied in their production and thus
require more varied training data. It may also be related the
relative occurrence of these action units; the average base
rate of the former group of action units was 15.76%, while
the average base rate of the latter group was 38.67%. Thus,
more frequent facial actions may require fewer subjects in
the training set to provide the necessary data variety.

Increasing the number of training frames per subject did
not significantly change classification performance when
using SIFT features. This result may suggest that subjects
are highly consistent in producing facial actions. If so, then
adding more frames per subject would only be adding more
data points close to existing support vectors and classification
performance would not change.

When using shape (i.e., 3DS) features, on the other hand,
both the number of subjects and the number of frames
per subject had some effect on classification performance.
Similar to the finding of Zhu et al. [42], we found that
performance slightly but consistently lowered for most action
units as the number of subjects in the training set increased.



This effect was marked for one action unit in particular (i.e.,
AU 11), which may be due to the fact that many subjects
never made that expression. As such, adding more subjects
to the training set may have skewed the class distribution.
Overall, however, this pattern of results was unexpected and
is difficult to explain. Due to the conservative nature of our
cross-validation procedure, we are confident that it is not an
anomaly related to sampling bias. Further research will be
required to explore why appearance but not shape features
behaved as expected with regard to the number of subjects
in the training set.

For shape-based features, the results of increasing the
number of training frames per subject were mixed. For five of
the twelve action units, performance significantly increased
with the number of frames per subject. This may be due to
the relative insensitivity of shape-based features to the facial
changes engendered by certain action units. The action units
that did improve with more frames per subject (i.e., AU 1,
AU 10, AU 12, AU 15, and AU 17) all produce conspicuous
changes in the shape of the brows or mouth, whereas the
action units that did not improve produce more subtle shape-
based changes or appearance changes.

Neither shape nor appearance features needed much data
from each subject to achieve competitive classification per-
formance. The minimum amount of training data sampled
per subject was 450 frames, which corresponds to just over
15 seconds of video. These results align with the “thin slice”
literature, which claims that it is possible to draw valid
inferences from small amounts of information [1].

It will be important to replicate these findings with addi-
tional large spontaneous facial expression databases as they
become available. Databases may differ in context, subject
demographics, and recording conditions; these and other
factors may affect how much training data is required. Future
studies should also explore how training set size affects
the performance of classifiers other than support vector
machines. Finally, the question of how to best select positive
and negative training frames is still open. Competitive per-
formance was achieved in the current study by making these
selections randomly; however, it is possible that we could
do even better with more deliberate choices. As frames from
the same expression events are likely to be more similar than
frames from different events, future work may also explore
the effect of including different numbers of events.

In conclusion, we found that the amount and variability
of training data fed to a classifier can have important
consequences for its performance. When using appearance
features, increasing the number of subjects in the training
set significantly improved performance while increasing the
number of training frames per subject did not. For shape-
based features, a different pattern emerged. Increasing the
number of subjects and training frames led to unexpected
results that warrant further research. Overall, the best per-
formance was attained using high dimensional appearance
features from a large number of subjects. Large numbers
of training frames were not necessary. When comparing
the results of different appearance-based approaches in the

literature, it is important to consider differences in number
of subjects. Failure to include sufficient subjects may have
attenuated performance in previous studies. On a practical
note, if you are starting a new data collection, our findings
support a recommendation to collect a small amount of high
quality data from many subjects and use high dimensional
appearance features such as SIFT.
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Krüger, and L. Sigal, editors, Visual analysis of humans,
pages 377–410. Springer, New York, NY, 2011.

[6] O. Deniz, M. Castrillon, J. Lorenzo, L. Anton, and
G. Bueno. Smile Detection for User Interfaces. In
G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Re-
magnino, F. Porikli, J. Peters, J. Klosowski, L. Arns,
Y. K. Chun, T.-M. Rhyne, and L. Monroe, editors,
Advances in Visual Computing, volume 5359 of Lecture
Notes in Computer Science, pages 602–611. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[7] N. R. Draper and H. Smith. Applied regression analysis.
Wiley-Interscience, 3rd edition, 1998.

[8] P. Ekman and W. V. Friesen. Facial action coding
system: A technique for the measurement of facial
movement. Consulting Psychologists Press, Palo Alto,
CA, 1978.

[9] P. Ekman, W. V. Friesen, and J. Hager. Facial action
coding system: A technique for the measurement of
facial movement. Research Nexus, Salt Lake City, UT,
2002.

[10] P. Ekman and E. L. Rosenberg. What the face reveals:
Basic and applied studies of spontaneous expression
using the facial action coding system (FACS). Oxford
University Press, New York, NY, 2nd edition, 2005.
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