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Abstract — Latest advances in network sensor technology and state of
the art of mobile robotics and artificial intelligence research can be
applied to develop autonomous and distributed monitoring systems.
Intelligent Space (iSpace) is an environmental system, which is able
to support human in informative and physical ways. iSpace observing
the space with distributed sensors, extracts useful information from
the obtained data and provides various services to users. This means
that essential functions of iSpace are “observation”, “recognition” and
“actuation.” In this paper, we focus on the observation function of
iSpace. And we describe observation systems to get information of
both human and mobile agents in the space to show new results.
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1 Introduction

In recent years, the demand for services such as hu-
man assistance and health care is increasing in countries
where the society is aging. Before giving an actual service
to people, we need a large number of information about
them. To solve this issue, many works try to turn the dai-
ly environment into an intelligent one. Intelligent Space
(iSpace) which has been studied in Hashimoto Laboratory
at the University of Tokyo'" is one of these works.

Fig.1 shows the concept of iSpace, which is a space
with multiple distributed and networked sensors and actu-
ators. In iSpace, not only sensor devices but also sensor
processing intelligence is distributed in the space because it
is necessary to reduce the network load in the large-scale
network , which can be realized by processing the raw data
in each sensor node before collecting information. The
sensor nodes distributed in the space are called Distributed
Intelligent Network Device(DINDs). A DIND consists of
three basic components: sensors, processors and commu-
nication devices. The processors deal with the sensed data
and extract useful information about objects (type of ob-
ject, position, etc. ), users (identification, posture, activ-
ity, etc.) and the environment (geometrical shape, tem-
perature, emergency, etc.). The network of DINDs can
realize the observation and understanding of the events in
the whole space.

Based on the extracted and fused information, actua-
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tors such as displayers or projectors embedded in the space
provide informative services to users. In iSpace, mobile
robots are also used as actuators to provide physical service
to the users, and for them we use the name mobile agents.
A mobile agent can utilize the intelligence of iSpace. By
using distributed sensors and computers, the mobile agent
can operate without restrictions for the capability of on-
board sensors and computers as shown in Ref.[2]. More-
over, it can understand the request from people and offer
appropriate service to them.
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Fig.1 Structure of intelligent space(iSpace)

Fig.2 shows the present configuration of the iSpace
in the Hashimoto Lab. The present configuration involves
various sensors including Charge-Coupled Device (CCD)
cameras, an ultrasound Zone Positioning System (ZPS),
Laser Range linders (LRF). Moreover, the iSpace has
mobile robots, a large size screen and speakers for pre-
senting physical service and information to the users of the
space. All the modules are connected through the local ar-
ea network. Also, for achieving appropriate conditions
for the operation of cameras, the lighting in the space can
be easily adjusted.

In this paper, our current research topics on iSpace
are explained. Especially, we focus on the observation
function of iSpace. In section 2, 3 and 4, researches on
human observation, position estimation using electric-field
sensors, activity recognition using motion sensors, and fa-
cial expression recognition using cameras, respectively,
are introduced. Section 5 shows observation of mobile ro-
bot for assisting the localization function of the robot.
Section 6 introduces an application of an observation sys-
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tem to surveying tasks in a construction field. Finally, a
conclusion is given in section 7.

Fig.2 Experiment environment

2 Human activity recognition based on
4WI1H architecture

It is thought that the relation between a human and
an object is described by observing the use history of the
object™’. The use history of the object is observed by fo-
cusing on the object’s movement what is caused when it is
used by the human . The name, size, color, and shape
etc. of the object are information given beforechand. On
the other hand, there is information what occurs only af-
ter a person uses the object, such as the use history or the
movement history.

Such information is vast. Therefore, considering the
cost, it is not realistic to describe the use history informa-
tion of a wide arrangement of objects that exist in the
space. Hence, it is necessary that the object’s information
is written automatically without human interaction when
the object is used by a person”’. We try to describe hu-
man-object relations based on the following use history of
the object (4WI1H).

1) Where: the position of the object;

2) Who: the user of the object;

3) What: ID of the object;

4) When: the time of the object used;

5) How: the way of the object used.

The 4WIH context is used as a final application of
the architecture that uses both Compressive Sensing(CS)
and Self Organizing Maps (SOM ) specifically for the
“How” segment of the algorithm.

2.1 Hardware description

To perform the experiments we used an MIX sensor
from the company Xsens, which is a small and accurate
3DOF inertial Orientation Tracker. It provides drift-free
3D orientation as well as cinematic data: 3D acceleration,
3D rate of turn(rate gyro) and 3D earth-magnetic field® .
The system contains nine sensors which can be interlinked
with each other in order to obtain a more complex set of
data out of one specific object, as well as to provide a
good architecture for setting referenced cinematic
systems® . The data is retrieved using the Matlab toolbox
that comes with the product, which allows us to acquire in

real time all the needed data from the sensors.

The computer used was one with an Intel Core 2 Duo
processor running Windows XP Professional Edition and
Matlab 7.0. As well, we are making use of the L1 Magic
toolbox created by Emmanuel Candes at Calthec to devel-
op and make use of the Compressive Sensing Algorithms in
a Matlab Environment.

We will be using as well position sensors and RFID
tags for the further implementation of the 4W1H architec-
ture, yet for this article we have not included experimental
data regarding these sensors.

2.2 Algorithm description

The designed algorithm consists in 2 main blocks
(Fig. 3), the sensing or sampling segment in which we
make use of CS techniques to retrieve the data as fast as
possible”’ , and the classifying segment in which we apply

[8]

the Self Organizing Map techniques ™ .

-
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Fig.3 Algorithm description

Classifier

The first part obtains the data from the set of sensors
and decide which mani-fold is the best option for the cur-
rent working signal. And we apply the random sampling
technique described when explaining the CS theoretical
background. Afterwards we retrieve our signal in the main
server and reconstruct it with L1 norm convex optimiza-
tion. After the signal processing segment of the algo-
rithm, a pre-classification done, we separate the data ac-
cording to its nature: location, use, identification and
generate five matrices; each of those matrices will have
specific data for specific users and object interactions.

In this section we emphasize the processing of the
“How” matrix in which we apply a SOM to classify the
different inputs the system may present. And afterwards
we will in future work apply an optimization algorithm in
which we will be matching the resulting matrices with pre-
recorded ones in order to identify the user and recognize
or predict user actions in the space.

2.3 Results

When designing the sensing block of the algorithm
we decided to apply simple Fourier transformation and use
an orthogonal Fourier space for sampling. We decided to
do this in order to comply with the sparsity of the signals,
and being that the test signals where mainly circular-like
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movements of the hands a Fourier bases on seems correct
to apply. And we expected to give good results.

In the experiment we tested the accelerometer sensor
and apply the sensing algorithm to a single axis, expecting
to get similar results from all of the other axes. We used
an N = 512 for the signal elemental size. In Fig.4 we can
appreciate the original signal in red, which has two main
natural frequencies and a shorter one at the end. The line
in blue is the signal once it has being sensed with a signal
compression of 20% that being only 100 of the signal ele-
ments were sampled. Visual inspection complies in that
the sampled signal has the same harmonics as the original
signal. Afterwards we will test the performance of this
sampled signal in the SOM.
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Now we will present some results of the classification
output when sensing processed with the CS algorithm are
applied to the overall architecture. In Fig.5 we have the
U-Matrix (Graphical representation of a SOM where red
elements represent farness and blue elements represent
closeness) of a 20 <20 map that showed 1% of error when
recognizing previously trained patterns. It has been shown
that this training error derives from the local minimum
problem the SOM presents when being trained, since be-
ing a heuristic algorithm it is difficult to obtain a 100%

recognition rate or a coherent result after training, yet it
is very stable at the end of it.

As expected, the maps resulting from this work re-
sembles those obtained in previous papers, showing that a
CS technique effectively reduces the processing time and
performs a very good classification.

3 Recognizing facial expressions based on
machine learning technique

During the evolution of the human race several com-
munication methods have been developed along with com-
munication channels. These can be categorized into two
main groups: verbal and non-verbal communication chan-
nels. Verbal communication can be attained easily, or
transformed into another environment, so it came to ex-
istence early in the human-machine relationship. There
are more than one way to communicate between humans
(meta-communication) like expressions, gestures and pos-
tures. Nowadays the need for personal relationship (non-
verbal communication) between humans and artificial
tools is growing.

Different messages require different communication
channels. Human beings use verbal, vocal and non-verbal
signals to describe their emotional state. Facial expressions
are a form of non-verbal communication, which is an out-
ward reflection of a person’s emotional condition. Recog-
nizing these expressions help us to estimate the emotional
state of a person.

3.1 Facial expressions

Facial expressions result from one or more motions or
positions of the muscles of a face. These movements conv-
ey the emotional state of the individual to observers. Fa-
cial expressions are a form of nonverbal communication.

They are not only a primary means of conveying so-
cial information among humans, but also occur in other
mammals as well as some other animal species. Facial ex-
pressions and their significance in the perceiver can, to
some extent vary between cultures.

To describe these expressions Ekman et al. proposed
an anatomically oriented coding scheme, the Facial Action
Coding Systemm . This system is based on the definition of
Action Units(AUs), what cause facial movements, of a
face. Each action unit may correspond to several muscles
that together generate a certain facial action.

As some muscles give rise to! more than one action
unit, correspondence between action units and muscle
units is only approximate. 46 AUs were considered re-
sponsible for expression control and 12 for gazing direction
and orientation.

3.2 System configuration

The proposed system contains two main parts: a face
tracking unit to extract the human faces and a learning
system to learn and recognize the facial expressions
(Fig.6).

For the face tracking and extraction, the Dragonfly-
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2 CCD Camera from Point Gray is used. In the research
we used frontal images of the subjects, however their dis-
tance from the camera varies, therefore the size of the fa-
cial area does so too. Furthermore, sometimes some rigid
head motion occurs during the tracking. This presents as
rotation in the images, as well as some offsets, that need a
solution.

_’ Face Trackingand 1
! Extraction !

Dragonfly-2
camera Facial Feature Point

! Extraction !

R g

; Normalization '

3D facial expression DB I
(training set) E

Fig.6 Procedure of facial expression recognition

The system, tracking the human face with high-speed
cameras, extracts the pose-normalized image of the face
and feeds it to a Bayesian Learning system™” , which pro-
vides a dynamic model of the human face and classifies the
input image into AU codes.

4 Intelligent localization assistance for mo-
bile robots

Research on mobile robot navigation focused on per-
forming all subtasks of navigation by the robot itself.
Meanwhile, there have been considerable researches done
on tracking moving targets'™'. Often, this tracked in-
formation was utilized from the perspective of the tracker
and was rarely used as an aid for the targets. Target
tracking information can be successfully used as assistance
for autonomous mobile robot navigation as active feedback
information and is proposed here as “intelligent assis-
tance.” Intelligent assistance provides a means to aid mo-
bile robots by reducing their computational overhead in
navigation and enabling them to focus on their real appli-
cation. Moreover, intelligent assistance can speed up robot
navigation to achieve satisfactory service efficiencies.
Most importantly, intelligent assistance will minimize any
uncertainties in perceiving the environment by mobile ro-
bots.

4.1 System requirements and configuration

The main objective of this research is to introduce a

novel scheme “intelligent assistance” as an aid for autono-
mous mobile robot navigation. An Intelligent Assistant
(IA) with minimal set of sensing devices is expected to be
developed with the following requirements.

1) assist mobile robots with localization by reducing
their self-localization uncertainty (Fig.7);

2) reduce the computational overhead and occupy
mobile robots solely on their applications;

3) provide global map information: mobile robots
need not know the environment map nor build the map;

4) make mobile robots easily navigate in an unknown
environment in the presence of an 1A;

5) provide assistance for several mobile robots simul-
taneously;

6) both indoor and outdoor assistance;

7) expand assistance space by interconnected mobile
intelligent assistants.

® Moblie robot
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P . T ' conrsttaqm
< > ¢ > ~-- % - uncertain
\’!/ - \\*—!_7/"' % \ I'ﬂal'ginty
Increased uncertainty margin - '\ 9
Without IA With IA

Fig.7 Reducing self-localization uncertainty using A

The schematic diagram of the proposed system is
shown in Fig. 8. Background subtraction method is used to
detect moving objects in both camera and laser range find-
er sensor data. The proposed sensor unit comprises an
IEEE 1394 Point Grey Dragonfly-2 camera and a Hokuyo
UTM-30LX laser range finder.

Particle filter
based sensor
fuser/trscker

Clustering
Center position
adjustment
Data
association
Connecton
‘manager

Fig.8 Schematic diagram of the proposed system

The two sensors are installed together in such a way
that the optical axis of the camera is parallel to that of the
LRF and are calibrated precisely beforechand. This imple-
mentation enables the coordinate transformation between
laser scanning plane and camera coordinate system as sim-
ple as possible. Along with the sensor unit calibration in-
formation, the particle filter based sensor fuser tracks all
those initiated targets. The feedback from the connection
manager lets the tracker know which target to track (ini-
tiated targets) and which targets to be dropped. Output
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from the particle filter tracker is clustered and associated
with respective to targets (mobile robots) and will be
available to the connection manager, which keeps infor-
mation about mobile robots. When assistance is needed,
the mobile robots are connected to the connection manag-
er, and requests localization and path planning informa-
tion.

4.2 State-space representation of target dynamics
and observation system

Effective extraction of useful information about the
target’ s state from observations is the key to successful
target tracking. To achieve this, two models, namely the
system model and measurement model, are required.

Target State: The target state is represented with its
X, Y coordinates as well its velocities in X and Y direc-
tions (Fig.9).

y

ey

=R R

@) (b)

Fig.9 (a) Target state; (b) Coordinate representation

By choosing the state like above, in addition to its
position in the XY -coordinates, its velocity and thereby
its heading direction can be estimated. This is because, as
we have seen, most robots are non-holonomic, using dif-
ferential-drive systems or Ackerman steered systems. For
such robots, the non-holonomic constraints limit the ro-
bot’ s velocity in each configuration (x,y,0) , and as a
result its heading angle can be computed using

o = ran (). (1)
T,

System Model: We adhere a constant velocity (cv)
white acceleration model described as follows ( the
equations only portrays with respect to X axis and equally
applies to Y axis):

Xy = 2 T Ti}e + w,,

T = L T oW, (2)
where x, is the x coordinate at time &, T is sampling in-
terval, w, is process noise. As a result, we have the ma-
trix equation:

X = Fo X + wy,s
for

F. = (3)

1 7T 0 0
0 1 0 0
0 0 1 T
0 0 1
Measurement Model: The likelihood is calculated for
each particle. As camera observations and LRF observa-
tions are independent, the resulting likelihood can be giv-
en by
(U7 1 X)) = p(U, | X)p(Z | X)), (4)

where U, is the processed image, Z; is LRF data. p(Z, |
X, ) is computed using

p(Z, 1 X)) = exp(— d*[26”)] V 2ra, (5)
for ¢ is position error for LRF and d is minimum Euclidi-
an distance between z, " ( n™ particle) and =, ( " ray).
Ref.[12] describes a method to evaluate p(U, | X,) in
which this probability is given by a simple function that
returns a constant value S(0 << S <C 1) depending on the
angle the target is presented in the image plane. Instead of
such simple functions, statistical functions such as Gaus-
sian kernels can also be utilized.

4.3 Preliminary results

Preliminary experiments were carried out tracking a
single mobile robot-Pioneer 2DX. The Sampling Impor-
tance Resampling (SIR) particle filter is chosen for the
state estimation for the sake of simplicity and effective-
ness. Since camera data and LRF data are independent,
only the LRF data is integrated in the measurement mod-
el.

The Pioneer 2DX is set to wander in the space, and
the robot is tracked using the LRF measurements.

To validate the results, the pose of the robot is simul-
tancously tracked using the ZPS in the laboratory, via two
ultrasonic tags attached to the robot.

Fig. 10 shows the results for position estimation. And
Fig. 11 compares the heading angles estimated by the par-
ticle filter and ZPS. When the robot makes rotations with
no translation velocity, the heading angle is not calculat-
ed, which explains the discontinuities in the graph.
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5 Surveying system in a construction field

In most construction fields, one often needs to put a
mark on a certain position, and in most cases, these sur-
veying tasks are performed by a Total Station. Although
this device can survey with high accuracy, it has several
disadvantages:

1) Impossible to track multiple objects at once;

2) Impossible to track in real-time;

3) Too expensive to purchase or even to rent.

To overcome such problems, we propose a position
measurement system using LRFs.

5.1 System configuration

Fig. 12 shows an overview of the proposed system. In
the proposed system, a worker moves in the construction
field, carrying a reference bar, and it is detected by mul-
tiple LRFs set at a higher position than human height.

Fig. 12 Proposed position measurement system using LRFs

This real-time position measurement system is low-
cost according to the price of the LRF, and can measure
multiple positions at once when multiple reference bars are
used, which leads to working hour efficiency. Also by
carrying a mobile display device (e.g. a PDA or laptop),
and displaying the positions of the reference bars on a
map, the workers can easily gain information on where
they are and where objective points are in the construction
field through a wireless network.

However, since data from the LRFs are nothing
more than the contour of the reference bar, we need to
estimate its center position based on its contour. For this
reason, we adopted cylindrical shaped reference bars,
which will make the contour of the reference bar a circu-
lar arc irrespective of the direction from which it is
scanned. We utilized the Least Square Method (LSM) and
the Maximum Likelihood Estimation (MLE) to fit a circle
equation to observed data points from an LRF"™'. Anoth-
er problem using LRFs is that the number of sample points

decreases if the distance becomes large, because the LRF
emits a laser ray radially. Therefore, we set a moving
head pan unit, SPU-01 from Sustainable Robotics, be-
neath the LRF as shown in Fig. 13(a). The unit can turn
by the angular resolution of 0.015 degrees. Since the an-
gular resolution of the LRF can be improved about 17
times by using the pan unit. By using 17 different scanned
results, we can observe a dense contour as shown in
Fig. 13(b).

+(7301, -2740)

(@ (b)

Fig.13 (a) A combination of the LRF and the pan unit; (b) Ob-
tained data by using the pan unit

5.2 Experiment

The experiment was to evaluate the proposed meth-
od. In this experiment, the target was placed on the
points (,0), (» = 6 m, 8 m, 10 m, *--, 30 m) in the
LRF coordinate system and the estimated error as com-
pared among a conventional Constant Distance Method
(CDM) proposed in Ref.[16] and the proposed LSM and
MLE.

The estimated error of three methods without/ with
the pan unit is shown in Fig. 14 and 15, respectively. In
the figures, an error bar shows the standard deviation of
the estimated error at each distance. From Fig. 14 and 15,
it can be said that the estimated error of the LSM and the
MLE significantly decreases by improving the angular res-
olution using the pan unit.
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Fig. 14 Estimated errors of the three methods without pan unit

Especially, the estimated error of the MLE is stable
through all distances and is less than 12 mm. Moreover,
the variance of the estimate error at each distance could be
decreased compared with Fig. 14, which is necessary for
surveys in construction field to determine the measured
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position precisely.
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6 Conclusion

This paper described the ongoing researches on the
observation function of Intelligent Space (iSpace) which
has ubiquitous sensory intelligence. The ultimate goal of
iSpace project is to accomplish an environment that com-
prehends human’ s intentions and satisfies them. Even
though such a complete system cannot be achieved immed-
iately, it is certain that a useful system can be achieved
with current technology by proper system integration.
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