
HSI 2009 Catania, Italy, May 21-23, 2009 
  

Abstract — This paper describes how the safe mobile code 

technology can be integrated into the Intelligent Space 

environment. In the Intelligent Space, several Distributed 

Intelligent Network Devices communicate and share their 

information about a human environment. In this 

environment mobile robots can be controlled with mobile 

code technology. The mobile code is a program-component 

obtained from a remote system, transferred across a network 

and dynamically downloaded and executed on the robots. 

This code is created, verified, stored and transmitted to the 

robot using the Certified Proved-Property-Carrying Code 

architecture, where properties and their proofs also attached 

to the code. The receiver can verify the proofs and it can 

decide whether to use or to refuse the received mobile 

component. Information about the robot's environment is 

also sent to the robot from the Intelligent Space. Robots 

contain explicit and formally expressed security 

requirements. Explicit and formal properties of the mobile 

code are attached to the mobile code. Then a formal 

verification system can verify the mobile code properties 

correspondence against the robots requirements. The robot 

refuses to execute those mobile code tasks violating it's 

requirements. 

 

Keywords — Intelligent Space, distributed sensors, 

CPPCC, mobile code, mobile robots, requirement 

verification. 

I. INTRODUCTION 

HE field of robotics is closely related to Artificial 

Intelligence. Intelligence is required for robots to be 

able to handle such tasks as navigation, referred to as 

robotic mapping including the sub-problems of localization 

(knowing where you are), mapping (learning what is 

around you) [1] and path planning (figuring out how to get 

there) and such as manipulate objects (usually described in 

terms of configuration space).  

Robots surronds us more and more. They work around us 

and they help us. The human environment is much more 

complex and complicated for the robots than a "laboratory" 

or a "research" environment. Robots need lots of 

information about the human environment to be able to 

achieve their tasks. 

This paper illustrates a model of a system using mobile 

robots having the following three main goals. 

1. The robot works in a human environment. 

2. The robot executes various tasks. 

3. The robot is safe, in that sense, that the actions of 

the robot are formally verified against a set of 

security requirements. 

The system contains multiple robots, the robots 

cooperate with each other and with other components of the 

system. To achieve the previous three goals the system 

needs the following three requirements. 

1. The system needs information from the human 

environment. 

2. The system uses mobile code which can be 

downloaded and linked dynamically, with the 

description of the various tasks. 

3. The system uses formal verification system which 

is able to check the correspondence of the 

descriptions of the formal tasks against the security 

requirements of a robot. 

There exists several models to realise these three 

requirements separately [2]. Our model integrates all of 

them in a coherent system using the following  three 

components. 

1. Intelligent Space described in Section 2. 

2. Mobile code technology illustrated in Section 3. 

3. CPPCC architecture and the B-method both 

presented in Section 4. 

Section 5 illustrates the integration of these components 

mentioned above. The final section contains the 

conclusion. 

II. INTELLIGENT SPACE 

The Intelligent Space (iSpace) is a space (room or 

corridor), which has distributed sensory intelligence 

(various sensors, such as cameras and microphones with 

intelligence) and actuators (TV projectors, speakers, and 

mobile agents) to manipulate the space [3]. For the 

illustration of the main concept of the iSpace see Fig. 1. 

A space becomes intelligent, when Distributed 

Intelligent Network Devices (DINDs) are installed in it [4]. 

A DIND has a sensing function through devices such as a 

camera and microphone that are networked to process the 

information in the Intelligent Space. The DINDs monitor 

the space, achieve data and share them through the network 

[5].  
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Fig. 1. The iSpace concept. 

 

The iSpace also consists of humans and not only of 

sensors, cameras or robots. For instance, the iSpace can 

recognise humans, track their movement to identify the 

walking areas and learn the shortest safest path in the 

environment [6][7]. 

The iSpace is a system for supporting people in it. Events, 

which happen in it, are understood. However, to support 

people physically, the intelligent space needs robots to 

handle real objects. Mobile robots become physical agents 

of the Intelligent Space and they execute tasks in the 

physical domain to support people in the space. Moreover, 

robots can understand the requests (e.g. gestures) from 

people more effectively. The applicable tasks include 

movement of objects, providing help, for example to aged 

or disabled persons etc [8]. 

The ongoing research activities about Intelligent Space 

achieved several results and solutions in the field of motion 

control [9], feature extraction [10], recognition and 

tracking the path of moving objects [11]. Recent research 

focuses on image recognition and on solutions that are 

developed on the analogy of the human vision processing 

[12]. 

III. CONTROLLING THE ROBOTS USING MOBILE CODE 

TECHNOLOGY 

Several different technologies can be applied to control 

robots. We can distinguish three main approaches of 

controlling. 

The most basic method is called teleoperation. The robot 

sensor data is transmitted to a remote operator. The 

operator sends each command separately back to the robot. 

These commands are very simple and they command the 

robot "step by step", such as turn left, go ahead, grab, etc.  

This method requires a continuous and reliable connection 

with the robot. For example this method is used for remote 

controlled robotic arms.  

In the second method the robot controlling program is 

running directly on the robot. The robot can execute only 

one program which is initially installed on it. The robot 

executes the program autonomously and it can only receive 

control data, for example, checkpoints it has to attain. In 

this method while the robot executes his control program it 

accesses its sensor data, makes decisions and controls its 

actuators and motors. The advantages of this method is the 

autonomy of the robot and the small need of 

communication. Still it also has disadvantages. The robot 

controlling program can be adequate for some situations, 

but if the robot environment changes, the robot control 

program easily become outdated and not well suited to the 

changed situation. 

The third method tries to overcome the problems of the 

second method. The robot executes a framework which 

downloads and executes the robot controlling program 

dynamically. The dynamically downloaded program can be 

referred as "mobile code". Mobile code is a program or a 

program-component obtained from a remote system, 

transferred across a network and dynamically downloaded 

and executed on a local system [13]. Examples of mobile 

code include plugins, JavaScripts and ActiveX controls 

(executed in web browsers) or codecs (executed in 

multimedia players). The mobile code technology is widely 

used in fields with multi-purpose and dynamically 

determined execution. This method does not require 

continuous connection, but still provides a high flexibility 

in the execution of the various tasks. 

From these technologies our model uses the mobile code 

technology. One of our goals is to support the flexibility of 

the use of robots. More precisely we would like to make the 

robots capable to execute various tasks which are not 

known in advance and which are assigned to the robots "on 

the fly", dynamically by the iSpace. The mobile code 

technology is well suitable  to achieve this goal. 

In our model the robots are parts of the iSpace, they 

cooperate with each other and with other parts of the iSpace 

and they also share their information. This architecture 

does not contain central controller. Humans and DINDs of 

the iSpace can send mobile codes to the robots. During the 

execution of their tasks robots can communicate with the 

iSpace and receive information about the environments.   

The simplest way to assign the task to a robot is, when a 

human operator allocates the mobile code realising the task 

for a specific robot. The iSpace sends the mobile code to the 

selected robot who obtains it and then executes it.  

Another possible way is, when a human operator only 

determines the mobile code and the iSpace searches for an 

adequate robot and allocates the robot to the task. This 

search can depend on different criteria, such as the 

availability, the characteristics and the position of the robot 

in the space, etc. 

IV. VERIFICATION OF THE REQUIREMENTS 

Since the mobile robots exist, work, navigate and operate 

in human environment, it is natural to request them to 

satisfy certain basic requirements. In most of the cases 

these requirements exist only implicitly in the robot 

controlling code. For example the robot stops when its 

ultrasound distance sensor detects an object too close to it. 

In our model we would like to express these requirements 



 

explicitly, and verify whether the mobile code satisfies 

these requirements.  

The requirements and the properties of the mobile codes 

are expressed in a formal way which allows the use of 

formal verification systems. This section presents the way 

of the formal definition of the requirements, then the used 

formal verification method and finally an architecture 

support to the verification and to the safe transmission of 

the mobile code. 

These examples in this paper use the B-method [15] for 

the formal representation and the formal verification 

system, but the model could also use other formal 

representation and corresponding verification systems too. 

(For more detail see [14].) 

The development process proceeds with the application 

of refinement steps until an "implementation" is produced. 

The refinement of a specification involves the 

reformulation of an abstract machine by making it more 

concrete and extending it with further details.  The data 

structures and substitutions of the implementation are B 

constructs, independent of specific programming 

languages, but they can easily be translated into constructs 

of a concrete programming language. This code generation 

phase can produce source code in several widely used 

programming languages, for example Ada, Java and C#. 

The process of proving the correctness of a program in B 

is structured according to the applied refinement steps. 

During each refinement it is proved that the properties of 

the original abstract machine follow the properties of the 

resulting (either abstract machine or implementation) unit. 

So the correctness of the implementation with its respects 

to its specified properties will be proven in this way. The 

whole proving process can be realised with the aid of 

automatic and semi-automatic proof tools.  

A. Requirements 

In the introduced model a robot is part of a complex 

system, the iSpace. It has to attend different demands of 

multiple entities (people, other DINDs of the iSpace). 

These demands are different tasks (missions) expressed as 

mobile code components assigned to the robot. The robot 

has certain requirements and it can refuse tasks which do 

not satisfy these requirements. 

The requirements of the robot are formally defined 

properties (mainly invariants). For example these formal 

requirements can be the following. 

� The robot may not go to places from where it is not 

able to go back to its service station. 

� The robot is prohibited to go to closer than 5cm to 

any objects or people. 

� The robot has some resource bounds (memory, time, 

power consumption etc.). 

� There are prohibited places in the space (lift, 

stairway, dangerous places etc.). 

Figure 2 illustrates an example using the B syntax. The 

example is a small part of a specification of a robot 

navigation system.  

 
Fig. 2. The requirements imposed against the tasks. 

 

In this example the variable state describes the current 

state of the robot (Moving or Stopped), the variables x 

and y define the current position of the robot and the 

variable dir describes the current direction of the robot. 

The robot has one requirement, that each task has to be 

started from, and stop in a given state. We can formulate 

this requirement as an invariant state=Stopped => x=0 

& y=0 & dir = North, namely if the state of the robot is 

Stopped it has to be the place x=0 and y=0,  and its 

direction has to be North. 

In our model the illustrated verification process and the 

safe transmission of the mobile codes are supported by a 

Certified Proved-Property-Carrying Code architecture. 

This architecture is described in detail in the following 

subsection. 

 

 
Fig. 3. A fragment of the implementation of the code. 



 

B. Formal verification of the mobile codes against the 

requirements 

The explicitly and formally expressed requirements are 

verified against the properties of the mobile code. The 

properties of the mobile code are expressed also explicitly, 

in the same formalism, with the use of the B syntax. Using 

the B-method the properties of the code are available in an 

explicit manner. 

In our model the method to create the code and the 

properties is irrelevant. As a proof of concept, a simple 

mission program has been developed using the B-method 

(see Figure 3). 

This mission tries to move the robot forward to the 

northern border of the world: it succeeds if the robot finds 

no obstacles in the way. After reaching the northern border 

or finding an obstacle, the robot is turned back and returns 

to the original position as required. 

C. The CPPCC architecture 

As we mentioned earlier in our model mobile code 

technologies are used to control some functionalities of a 

robot. The control code of a robot can be extended with 

components by dynamically linking the obtained piece of 

code to the application. Such technologies are extremely 

vulnerable against malicious codes, as well as against 

accidentally erroneous or improper code, especially 

because these mobile components can also be created by a 

second party. For this reason it is extremely important to 

verify the correctness of the components and to ensure a 

safe manner of their transmission. 

This safe transmission can be done, for example, with 

the use of the proof-carrying code technique [16]. 

Proof-carrying code (PCC) is a piece of mobile code with 

attached properties and their proofs. The receiver of the 

code can verify the attached proofs, and – by investigating 

the attached properties – it can decide whether to use or to 

refuse the received mobile component. This technique has 

also some drawbacks. For example the verification of the 

proofs may significantly slow down the code receiver 

application. It is even possible that the code receiver does 

not have the necessary resources (memory, network 

bandwidth, CPU-time, proof-checking software) for 

verifying the proofs. 

In our model an other technique is used to eliminate 

these drawbacks. 

 

 
Fig. 4. Overview of the Certified Proved – Property - 

Carrying Code technology. 

 

This technique is called Certified 

Proved-Property-Carrying Code [17] (or CPPCC, for short). 

CPPCC combines the certificate-based and the PCC 

approaches in order to provide highly efficient use of 

verified mobile program components. In this architecture 

the code receiver can make a decision on whether or not to 

accept and utilise the received code based on the declared 

properties of the code and on the opinion of a third-party, 

creditable certificate authority, which has verified whether 

the code had or had not the declared properties. 

As Figure 4 illustrates, there are four different 

participants in a CPPCC system, the code producer, the 

certificate authority, the code repository and the code 

receiver. The scenario for producing and receiving safe 

mobile components is the following. 

 

1. The code producer creates a program component 

and additionally it formulates and proves the 

properties of the created component based on the 

source code of the component. (Different kind of 

proof systems can be used for this purpose, ranging 

from manual theorem provers to fully automatic 

model checkers.)  Finally the producer packs 

together the source code, the properties and the 

proofs and sends the package to the certificate 

authority. 

2. The certificate authority checks that using the 

received proofs, the specified properties can be 

proved for the source code of the received program 

component. Then it creates the target code from the 

source code, packs the target code and the 

properties together, signs the package and sends it 

back to the code producer. 

3. The code producer uploads the signed package to a 

code repository. 

4. The code receiver obtains the mobile code from the 

code repository and checks the certificate attached 

to the received package. If the signer is trusted, it 

verifies whether the properties of the code match its 

requirements. If they match, the received code is 

linked into the code receiver and gets executed. If 

the certificate is not correct or the properties do not 

match the receiver refuses the execution of the 

code. 

The first three steps are performed in static time with 

respect to the code receiver application. 

V. INTEGRATION OF THE SAFE MOBILE CODE INTO THE 

ISPACE  

In this section we present how the CPPCC architecture 

components are integrated in the iSpace environment.   

In our model, the code producer can be DIND or a third 

party outside of the iSpace. When the producer of the 

mobile code is a DIND of the iSpace, the role of the certifier 

is not essential, since we can trust that the properties 

packed together with the code are really accomplished by 

the code.  



 

1.  The robot checks the certificate. 

2.  IF {the certificate is correct} THEN 

3.   The robot obtains information from the 

    iSpace. 

4.   The robot combines the properties of the 

    mobile code and the obtained information 

    and compares them with its requirements.  

5.   IF {the requirements match against the 

     properties combined with the 

     information} THEN 

6.    The robot accepts and executes the code.  

7.   ELSE 

8.    The robot refuses the execution.  

9.   END IF 

10.  ELSE   

11.   The robot refuses the execution. 

12.  END IF   

Fig. 5. The linker algorithm of a mobile robot. 

 

But the verification whether the requirements of the 

robots match against these properties is essential, hence 

when the code is generated, the current state of the robot 

executing the code is not known (for example its position, 

the amount of its power, the amount of its free memory). 

The second possible solution is when the code producer 

is not a part of the iSpace. In this case the certification and 

the verification process are both essential, since the 

producer is not trusted.  

From the point of view of our model, it is not essential, 

whether the certifier is a part of the iSpace or not, only the 

fact whether we can trust it or not is important. The certifier 

can be a special DIND which does not require sensors or 

actuators and has only interface layer and local intelligence 

layer. 

The code repository becomes part of the iSpace. The 

mobile codes  describing the various tasks, are stored in the 

code repository. 

As the result of some interactions of a human or of a 

DIND, the mobile code will be sent from the repository to 

the receiver. The repository can also be considered as a 

DIND. It can have low level physical devices and sensors to 

recognise the mentioned interactions (for example 

keyboard, camera, etc.), it also has some local intelligence 

to process the interactions and has some interfaces to get 

the mobile code from the code producer, to recognise the 

interaction of other DINDs and to send the mobile code to a 

given DIND, the code receiver.  

The role of the code receiver will be played by a mobile 

robot in the iSpace. It obtains the mobile code containing  

the target code, the properties of the code and a certificate. 

After the robot has received the mobile code, a simple 

algorithm illustrated in Figure 5 is executed.   

Comparing with the algorithm of the code receiver 

component of CPPCC illustrated in section 4 a little 

modification can be detected here. Namely, the 

requirements of the receiver (the robot) are compared not 

against the properties of the code itself but against a 

combined version of it. The reason for it, is that robot does 

not have global information about its environment. The 

information is stored in a scattered form in the iSpace, so 

the robot needs cooperation with other components of the 

iSpace to be able to deal with the properties.  

 
Fig. 6. The specification of the elemental programs of the 

robot. 

 

For example, if the robot obtains the task to go to a given 

position placed in the space, it needs information about that 

position (is there any objects or humans, is it a dangerous 

place or part of a lift, etc.) to be able to determine whether 

this task hurts its requirements or does not. 

The information about the space can also be described by 

using the B syntax. Figure 6 specifies that the world is of 

bounded size (world = 5) and that it is static: during the 

execution of a mission no new obstacles between grid 

positions appear (the ENV is ABSTRACT_CONSTANTS). The 

ENV function assigns the value of 0 or 1 to the x, y 

coordinates and direction triplets. For example 

ENV(i,j,south) = 1 means that at the position (i,j) in 

the direction South, then there is a free way (no wall). The 

PROPERTIES clause defines that, obstacles are symmetric, 

namely there is an obstacle between A and B exactly when 

there is an obstacle between B and A (this is expressed by 

the last four properties of ENV).   

Our model is the result of the described integration. It 

contains all flavours of the iSpace and additionally thanks 

to the CPPCC architecture, it provides the safe use of 

mobile robots and thanks to the adaptation of mobile code 

technology it also supports the flexible applicability of the 

mobile robots. 

VI. CONCLUSION 

This paper presents a model to provide a flexible and safe 

use of mobile robots operating in an iSpace. The model 

supports the flexibility by using mobile code technologies, 

describing the different tasks to be executed by the robots. 

To guarantee the safe execution of the code, the 

correspondence of the formal requirements of the robots is 



 

verified against the properties of the mobile code. In the 

current state of the work, we test several, different, possible 

implementations of the presented model. 

Concerning future work, two main open questions could 

be mentioned. One of them would be, how to generate 

automatically a mobile code, how to obtain the (mobile) 

code and it's properties. Using the B method is and 

adequate tool to obtain the mobile code and it's properties, 

since, first an abstract specification of the problem is 

created, then this specification is refined into a concrete 

implementation, then the target code can be generated 

automatically [18] [19]. To generate automatically the 

mobile code, the code can also be assembled by combining 

smaller pieces of codes and their corresponding  properties 

[20].  

The second question could be the verification of the 

mobile code properties against the robot's requirements. If 

the code properties and the requirements are expressed in 

the same language, at the same level of abstraction (as in 

our examples) the verification is much easier than if they 

are expressed in different languages and at different levels 

of abstraction. In the latter case, if the requirements are 

very general and the properties are very detailed, then 

proving their correspondence can be very complex and can 

require a considerable amount of time [21]. 

At first sight, artificial intelligence and formal methods 

seems to be very far fields from each other in the 

informatics. In our model, robots use traditional artificial 

intelligence techniques and algorithms to recognise objects, 

to plan their paths, etc. The properties "attached" to these 

tasks allow formal verification systems to verify the safety 

requirements. This could guarantee a safer use of robots in 

our real, human world's environment. 
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