
HSI 2009 Catania, Italy, May 21-23, 2009

Abstract — This paper describes how the safe mobile code

technology can be integrated into the Intelligent Space

environment. In the Intelligent Space, several Distributed

Intelligent Network Devices communicate and share their

information about a human environment. In this

environment mobile robots can be controlled with mobile

code technology. The mobile code is a program-component

obtained from a remote system, transferred across a network

and dynamically downloaded and executed on the robots.

This code is created, verified, stored and transmitted to the

robot using the Certified Proved-Property-Carrying Code

architecture, where properties and their proofs also attached

to the code. The receiver can verify the proofs and it can

decide whether to use or to refuse the received mobile

component. Information about the robot's environment is

also sent to the robot from the Intelligent Space. Robots

contain explicit and formally expressed security

requirements. Explicit and formal properties of the mobile

code are attached to the mobile code. Then a formal

verification system can verify the mobile code properties

correspondence against the robots requirements. The robot

refuses to execute those mobile code tasks violating it's

requirements.

Keywords — Intelligent Space, distributed sensors,

CPPCC, mobile code, mobile robots, requirement

verification.

I. INTRODUCTION

HE field of robotics is closely related to Artificial

Intelligence. Intelligence is required for robots to be

able to handle such tasks as navigation, referred to as

robotic mapping including the sub-problems of localization

(knowing where you are), mapping (learning what is

around you) [1] and path planning (figuring out how to get

there) and such as manipulate objects (usually described in

terms of configuration space).

Robots surronds us more and more. They work around us

and they help us. The human environment is much more

complex and complicated for the robots than a "laboratory"

or a "research" environment. Robots need lots of

information about the human environment to be able to

achieve their tasks.

This paper illustrates a model of a system using mobile

robots having the following three main goals.

1. The robot works in a human environment.

2. The robot executes various tasks.

3. The robot is safe, in that sense, that the actions of

the robot are formally verified against a set of

security requirements.

The system contains multiple robots, the robots

cooperate with each other and with other components of the

system. To achieve the previous three goals the system

needs the following three requirements.

1. The system needs information from the human

environment.

2. The system uses mobile code which can be

downloaded and linked dynamically, with the

description of the various tasks.

3. The system uses formal verification system which

is able to check the correspondence of the

descriptions of the formal tasks against the security

requirements of a robot.

There exists several models to realise these three

requirements separately [2]. Our model integrates all of

them in a coherent system using the following three

components.

1. Intelligent Space described in Section 2.

2. Mobile code technology illustrated in Section 3.

3. CPPCC architecture and the B-method both

presented in Section 4.

Section 5 illustrates the integration of these components

mentioned above. The final section contains the

conclusion.

II. INTELLIGENT SPACE

The Intelligent Space (iSpace) is a space (room or

corridor), which has distributed sensory intelligence

(various sensors, such as cameras and microphones with

intelligence) and actuators (TV projectors, speakers, and

mobile agents) to manipulate the space [3]. For the

illustration of the main concept of the iSpace see Fig. 1.

A space becomes intelligent, when Distributed

Intelligent Network Devices (DINDs) are installed in it [4].

A DIND has a sensing function through devices such as a

camera and microphone that are networked to process the

information in the Intelligent Space. The DINDs monitor

the space, achieve data and share them through the network

[5].

Adaptive, Safe Mobile Robot Programming in

the Intelligent Space

Laszlo A. Jeni†, Zoltan Istenes‡, Mate Tejfel‡, Peter Korondi*, Hideki Hashimoto†

†University of Tokyo, Institute of Industrial Science, ‡Eotvos Lorand University, Dep. of Software

Technology and Methodology, * Budapest University of Technology and Economics, Dep. of Automation

and Applied Informatics

T

Fig. 1. The iSpace concept.

The iSpace also consists of humans and not only of

sensors, cameras or robots. For instance, the iSpace can

recognise humans, track their movement to identify the

walking areas and learn the shortest safest path in the

environment [6][7].

The iSpace is a system for supporting people in it. Events,

which happen in it, are understood. However, to support

people physically, the intelligent space needs robots to

handle real objects. Mobile robots become physical agents

of the Intelligent Space and they execute tasks in the

physical domain to support people in the space. Moreover,

robots can understand the requests (e.g. gestures) from

people more effectively. The applicable tasks include

movement of objects, providing help, for example to aged

or disabled persons etc [8].

The ongoing research activities about Intelligent Space

achieved several results and solutions in the field of motion

control [9], feature extraction [10], recognition and

tracking the path of moving objects [11]. Recent research

focuses on image recognition and on solutions that are

developed on the analogy of the human vision processing

[12].

III. CONTROLLING THE ROBOTS USING MOBILE CODE

TECHNOLOGY

Several different technologies can be applied to control

robots. We can distinguish three main approaches of

controlling.

The most basic method is called teleoperation. The robot

sensor data is transmitted to a remote operator. The

operator sends each command separately back to the robot.

These commands are very simple and they command the

robot "step by step", such as turn left, go ahead, grab, etc.

This method requires a continuous and reliable connection

with the robot. For example this method is used for remote

controlled robotic arms.

In the second method the robot controlling program is

running directly on the robot. The robot can execute only

one program which is initially installed on it. The robot

executes the program autonomously and it can only receive

control data, for example, checkpoints it has to attain. In

this method while the robot executes his control program it

accesses its sensor data, makes decisions and controls its

actuators and motors. The advantages of this method is the

autonomy of the robot and the small need of

communication. Still it also has disadvantages. The robot

controlling program can be adequate for some situations,

but if the robot environment changes, the robot control

program easily become outdated and not well suited to the

changed situation.

The third method tries to overcome the problems of the

second method. The robot executes a framework which

downloads and executes the robot controlling program

dynamically. The dynamically downloaded program can be

referred as "mobile code". Mobile code is a program or a

program-component obtained from a remote system,

transferred across a network and dynamically downloaded

and executed on a local system [13]. Examples of mobile

code include plugins, JavaScripts and ActiveX controls

(executed in web browsers) or codecs (executed in

multimedia players). The mobile code technology is widely

used in fields with multi-purpose and dynamically

determined execution. This method does not require

continuous connection, but still provides a high flexibility

in the execution of the various tasks.

From these technologies our model uses the mobile code

technology. One of our goals is to support the flexibility of

the use of robots. More precisely we would like to make the

robots capable to execute various tasks which are not

known in advance and which are assigned to the robots "on

the fly", dynamically by the iSpace. The mobile code

technology is well suitable to achieve this goal.

In our model the robots are parts of the iSpace, they

cooperate with each other and with other parts of the iSpace

and they also share their information. This architecture

does not contain central controller. Humans and DINDs of

the iSpace can send mobile codes to the robots. During the

execution of their tasks robots can communicate with the

iSpace and receive information about the environments.

The simplest way to assign the task to a robot is, when a

human operator allocates the mobile code realising the task

for a specific robot. The iSpace sends the mobile code to the

selected robot who obtains it and then executes it.

Another possible way is, when a human operator only

determines the mobile code and the iSpace searches for an

adequate robot and allocates the robot to the task. This

search can depend on different criteria, such as the

availability, the characteristics and the position of the robot

in the space, etc.

IV. VERIFICATION OF THE REQUIREMENTS

Since the mobile robots exist, work, navigate and operate

in human environment, it is natural to request them to

satisfy certain basic requirements. In most of the cases

these requirements exist only implicitly in the robot

controlling code. For example the robot stops when its

ultrasound distance sensor detects an object too close to it.

In our model we would like to express these requirements

explicitly, and verify whether the mobile code satisfies

these requirements.

The requirements and the properties of the mobile codes

are expressed in a formal way which allows the use of

formal verification systems. This section presents the way

of the formal definition of the requirements, then the used

formal verification method and finally an architecture

support to the verification and to the safe transmission of

the mobile code.

These examples in this paper use the B-method [15] for

the formal representation and the formal verification

system, but the model could also use other formal

representation and corresponding verification systems too.

(For more detail see [14].)

The development process proceeds with the application

of refinement steps until an "implementation" is produced.

The refinement of a specification involves the

reformulation of an abstract machine by making it more

concrete and extending it with further details. The data

structures and substitutions of the implementation are B

constructs, independent of specific programming

languages, but they can easily be translated into constructs

of a concrete programming language. This code generation

phase can produce source code in several widely used

programming languages, for example Ada, Java and C#.

The process of proving the correctness of a program in B

is structured according to the applied refinement steps.

During each refinement it is proved that the properties of

the original abstract machine follow the properties of the

resulting (either abstract machine or implementation) unit.

So the correctness of the implementation with its respects

to its specified properties will be proven in this way. The

whole proving process can be realised with the aid of

automatic and semi-automatic proof tools.

A. Requirements

In the introduced model a robot is part of a complex

system, the iSpace. It has to attend different demands of

multiple entities (people, other DINDs of the iSpace).

These demands are different tasks (missions) expressed as

mobile code components assigned to the robot. The robot

has certain requirements and it can refuse tasks which do

not satisfy these requirements.

The requirements of the robot are formally defined

properties (mainly invariants). For example these formal

requirements can be the following.

� The robot may not go to places from where it is not

able to go back to its service station.

� The robot is prohibited to go to closer than 5cm to

any objects or people.

� The robot has some resource bounds (memory, time,

power consumption etc.).

� There are prohibited places in the space (lift,

stairway, dangerous places etc.).

Figure 2 illustrates an example using the B syntax. The

example is a small part of a specification of a robot

navigation system.

Fig. 2. The requirements imposed against the tasks.

In this example the variable state describes the current

state of the robot (Moving or Stopped), the variables x

and y define the current position of the robot and the

variable dir describes the current direction of the robot.

The robot has one requirement, that each task has to be

started from, and stop in a given state. We can formulate

this requirement as an invariant state=Stopped => x=0

& y=0 & dir = North, namely if the state of the robot is

Stopped it has to be the place x=0 and y=0, and its

direction has to be North.

In our model the illustrated verification process and the

safe transmission of the mobile codes are supported by a

Certified Proved-Property-Carrying Code architecture.

This architecture is described in detail in the following

subsection.

Fig. 3. A fragment of the implementation of the code.

B. Formal verification of the mobile codes against the

requirements

The explicitly and formally expressed requirements are

verified against the properties of the mobile code. The

properties of the mobile code are expressed also explicitly,

in the same formalism, with the use of the B syntax. Using

the B-method the properties of the code are available in an

explicit manner.

In our model the method to create the code and the

properties is irrelevant. As a proof of concept, a simple

mission program has been developed using the B-method

(see Figure 3).

This mission tries to move the robot forward to the

northern border of the world: it succeeds if the robot finds

no obstacles in the way. After reaching the northern border

or finding an obstacle, the robot is turned back and returns

to the original position as required.

C. The CPPCC architecture

As we mentioned earlier in our model mobile code

technologies are used to control some functionalities of a

robot. The control code of a robot can be extended with

components by dynamically linking the obtained piece of

code to the application. Such technologies are extremely

vulnerable against malicious codes, as well as against

accidentally erroneous or improper code, especially

because these mobile components can also be created by a

second party. For this reason it is extremely important to

verify the correctness of the components and to ensure a

safe manner of their transmission.

This safe transmission can be done, for example, with

the use of the proof-carrying code technique [16].

Proof-carrying code (PCC) is a piece of mobile code with

attached properties and their proofs. The receiver of the

code can verify the attached proofs, and – by investigating

the attached properties – it can decide whether to use or to

refuse the received mobile component. This technique has

also some drawbacks. For example the verification of the

proofs may significantly slow down the code receiver

application. It is even possible that the code receiver does

not have the necessary resources (memory, network

bandwidth, CPU-time, proof-checking software) for

verifying the proofs.

In our model an other technique is used to eliminate

these drawbacks.

Fig. 4. Overview of the Certified Proved – Property -

Carrying Code technology.

This technique is called Certified

Proved-Property-Carrying Code [17] (or CPPCC, for short).

CPPCC combines the certificate-based and the PCC

approaches in order to provide highly efficient use of

verified mobile program components. In this architecture

the code receiver can make a decision on whether or not to

accept and utilise the received code based on the declared

properties of the code and on the opinion of a third-party,

creditable certificate authority, which has verified whether

the code had or had not the declared properties.

As Figure 4 illustrates, there are four different

participants in a CPPCC system, the code producer, the

certificate authority, the code repository and the code

receiver. The scenario for producing and receiving safe

mobile components is the following.

1. The code producer creates a program component

and additionally it formulates and proves the

properties of the created component based on the

source code of the component. (Different kind of

proof systems can be used for this purpose, ranging

from manual theorem provers to fully automatic

model checkers.) Finally the producer packs

together the source code, the properties and the

proofs and sends the package to the certificate

authority.

2. The certificate authority checks that using the

received proofs, the specified properties can be

proved for the source code of the received program

component. Then it creates the target code from the

source code, packs the target code and the

properties together, signs the package and sends it

back to the code producer.

3. The code producer uploads the signed package to a

code repository.

4. The code receiver obtains the mobile code from the

code repository and checks the certificate attached

to the received package. If the signer is trusted, it

verifies whether the properties of the code match its

requirements. If they match, the received code is

linked into the code receiver and gets executed. If

the certificate is not correct or the properties do not

match the receiver refuses the execution of the

code.

The first three steps are performed in static time with

respect to the code receiver application.

V. INTEGRATION OF THE SAFE MOBILE CODE INTO THE

ISPACE

In this section we present how the CPPCC architecture

components are integrated in the iSpace environment.

In our model, the code producer can be DIND or a third

party outside of the iSpace. When the producer of the

mobile code is a DIND of the iSpace, the role of the certifier

is not essential, since we can trust that the properties

packed together with the code are really accomplished by

the code.

1. The robot checks the certificate.

2. IF {the certificate is correct} THEN

3. The robot obtains information from the

 iSpace.

4. The robot combines the properties of the

 mobile code and the obtained information

 and compares them with its requirements.

5. IF {the requirements match against the

 properties combined with the

 information} THEN

6. The robot accepts and executes the code.

7. ELSE

8. The robot refuses the execution.

9. END IF

10. ELSE

11. The robot refuses the execution.

12. END IF

Fig. 5. The linker algorithm of a mobile robot.

But the verification whether the requirements of the

robots match against these properties is essential, hence

when the code is generated, the current state of the robot

executing the code is not known (for example its position,

the amount of its power, the amount of its free memory).

The second possible solution is when the code producer

is not a part of the iSpace. In this case the certification and

the verification process are both essential, since the

producer is not trusted.

From the point of view of our model, it is not essential,

whether the certifier is a part of the iSpace or not, only the

fact whether we can trust it or not is important. The certifier

can be a special DIND which does not require sensors or

actuators and has only interface layer and local intelligence

layer.

The code repository becomes part of the iSpace. The

mobile codes describing the various tasks, are stored in the

code repository.

As the result of some interactions of a human or of a

DIND, the mobile code will be sent from the repository to

the receiver. The repository can also be considered as a

DIND. It can have low level physical devices and sensors to

recognise the mentioned interactions (for example

keyboard, camera, etc.), it also has some local intelligence

to process the interactions and has some interfaces to get

the mobile code from the code producer, to recognise the

interaction of other DINDs and to send the mobile code to a

given DIND, the code receiver.

The role of the code receiver will be played by a mobile

robot in the iSpace. It obtains the mobile code containing

the target code, the properties of the code and a certificate.

After the robot has received the mobile code, a simple

algorithm illustrated in Figure 5 is executed.

Comparing with the algorithm of the code receiver

component of CPPCC illustrated in section 4 a little

modification can be detected here. Namely, the

requirements of the receiver (the robot) are compared not

against the properties of the code itself but against a

combined version of it. The reason for it, is that robot does

not have global information about its environment. The

information is stored in a scattered form in the iSpace, so

the robot needs cooperation with other components of the

iSpace to be able to deal with the properties.

Fig. 6. The specification of the elemental programs of the

robot.

For example, if the robot obtains the task to go to a given

position placed in the space, it needs information about that

position (is there any objects or humans, is it a dangerous

place or part of a lift, etc.) to be able to determine whether

this task hurts its requirements or does not.

The information about the space can also be described by

using the B syntax. Figure 6 specifies that the world is of

bounded size (world = 5) and that it is static: during the

execution of a mission no new obstacles between grid

positions appear (the ENV is ABSTRACT_CONSTANTS). The

ENV function assigns the value of 0 or 1 to the x, y

coordinates and direction triplets. For example

ENV(i,j,south) = 1 means that at the position (i,j) in

the direction South, then there is a free way (no wall). The

PROPERTIES clause defines that, obstacles are symmetric,

namely there is an obstacle between A and B exactly when

there is an obstacle between B and A (this is expressed by

the last four properties of ENV).

Our model is the result of the described integration. It

contains all flavours of the iSpace and additionally thanks

to the CPPCC architecture, it provides the safe use of

mobile robots and thanks to the adaptation of mobile code

technology it also supports the flexible applicability of the

mobile robots.

VI. CONCLUSION

This paper presents a model to provide a flexible and safe

use of mobile robots operating in an iSpace. The model

supports the flexibility by using mobile code technologies,

describing the different tasks to be executed by the robots.

To guarantee the safe execution of the code, the

correspondence of the formal requirements of the robots is

verified against the properties of the mobile code. In the

current state of the work, we test several, different, possible

implementations of the presented model.

Concerning future work, two main open questions could

be mentioned. One of them would be, how to generate

automatically a mobile code, how to obtain the (mobile)

code and it's properties. Using the B method is and

adequate tool to obtain the mobile code and it's properties,

since, first an abstract specification of the problem is

created, then this specification is refined into a concrete

implementation, then the target code can be generated

automatically [18] [19]. To generate automatically the

mobile code, the code can also be assembled by combining

smaller pieces of codes and their corresponding properties

[20].

The second question could be the verification of the

mobile code properties against the robot's requirements. If

the code properties and the requirements are expressed in

the same language, at the same level of abstraction (as in

our examples) the verification is much easier than if they

are expressed in different languages and at different levels

of abstraction. In the latter case, if the requirements are

very general and the properties are very detailed, then

proving their correspondence can be very complex and can

require a considerable amount of time [21].

At first sight, artificial intelligence and formal methods

seems to be very far fields from each other in the

informatics. In our model, robots use traditional artificial

intelligence techniques and algorithms to recognise objects,

to plan their paths, etc. The properties "attached" to these

tasks allow formal verification systems to verify the safety

requirements. This could guarantee a safer use of robots in

our real, human world's environment.

REFERENCES

[1] Z. Vamossy: Map Building and Localization of a Robot Using

Omnidirectional Image Sequences. In: Proc. 4th International

Symposium on Applied Computational Intelligence and Informatics

(SACI 2007), Timisoara, Romania, 2007, pp. 191-194.

[2] Z. Istenes, T. Kozsik: Commanding a robot in a safe way. In:

Proceedings of the 10th Symposium on Programming Languages and

Software Tools (SPLST 2007), Budapest, Hungary, 2007, pp.

167-177.

[3] P. Korondi, H. Hashimoto: Intelligent Space, as an Integrated

Intelligent System. Keynote paper of International Conference on

Electrical Drives and Power Electronics, Proceedings, 2003, pp. 24-31.

[4] H. Hashimoto: Intelligent Space -How to Make Space Intelligent by

Using DIND-. In: Proceedings of the 2004 TRS Conference on

Robotics and Industrial Technology, Thailand, 2004, pp.1-11

[5] J. Lee, K. Morioka, N. Ando, H. Hashimoto: Cooperation of

Distributed Intelligent Sensors in Intelligent Environment.

IEEE/ASME Transactions on Mechatronics, Vol.9, No.3, 2004,

pp.535-543, ISSN 1083-4435

[6] P. T. Szemes, H. Hashimoto: Estimation of Walking Habit in iSpace.

In: Proceeding of the 4th International Symposium on Advanced

Intelligent Systems (ISIS 2003), 2003, pp.531-534, Jeju, Korea, ISSN

1738-0073

[7] L. A. Jeni, Z. Istenes, P. Korondi, H. Hashimoto: Hierarchical

Reinforcement Learning for Mobile Robot Navigation using the iSpace

Concept. In: Proceeding of 11th IEEE International Conference on

Intelligent Engineering Systems (INES 2007), Budapest, Hungary,

2007

[8] P. T. Szemes, J. Lee, H. Hashimoto, P. Korondi: Guiding and

Communication Assistant for Disabled in Intelligent Urban

Environment. In: Proceedings of IEEE/ASME International

Conference on Advanced Intelligent Mechtronics (AIM), Kobe, Japan,

2003, pp.598-603.

[9] P. T. Szemes: Human Observation-based Motion Control Strategies in

Intelligent Space. PhD Thesis, Tokyo University, Tokyo, 2005

[10] K. Morioka, H. Hashimoto: Color Appearance Based Object

Identification in Intelligent Space. In: Proc. of the 8th IEEE

International Workshop on Advanced Motion Control, Kawasaki,

Japan, 2004, pp. 505-510

[11] B. Resko, P. T. Szemes, P. Korondi, P. Baranyi, H. Hashimoto:

Artificial Neural Network based Object Tracking. In: Proceedings of

SICE Conference, Sapporo, Japan, 2004, pp. 1398-1403.

[12] Z. Petres, B. Resko, P. Baranyi, H. Hashimoto: Biology inspired

intelligent contouring vision device in intelligent space. In: Proc. of the

6th International Symposium on Advanced Intelligent Systems, Yeosu,

Korea, 2005, pp. 865-870

[13] C. Ghezzi, G. Vigna: Mobile Codes Paradigms and Technologies: A

Case Study. In: Proceedings of the 19th International Conference on

Software Engineering, LNCS 1219, Springer-Verlag, Berlin, Germany,

1997

[14] Z. Istenes, T. Kozsik, Cs. Hoch, L. A. Toth: Proving the correctness of

mobile Java code. In: Proc. of 6th Joint Conf. on Math. and Comp. Sci.,

Pecs, Hungary, accepted to Pure Mathematics and Applications, SAAS

Ltd.-SAAS Publishing, Budapest, Hungary, Vol. 17 (2006), No. 34,.

[15] J. R. Abrial: The B-Book. Cambridge University Press, 1996

[16] G. Necula: Proof-carrying code. In: Conference Record of POPL '97:

The 24th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Paris, France, 1997, pp. 106-119

[17] Z. Horvath, T. Kozsik: Safe mobile code CPPCC: Certified

Proved-Property-Carrying Code. G. Czajkowski and J. Vitek, Resource

Management for Safe Languages (in: ECOOP 2002 Workshop Reader,

LNCS 2548/2002, Springer-Verlag), 2002, pp. 8-10.

[18] Rodin project http://rodin.cs.ncl.ac.uk

[19] Rodin platform http://www.event-b.org

[20] L. Lamport, M. Abadi: Composing Specifications. In: ACM

Transactions on Programming Languages and Systems 15, 1, 73-132,

1993.

[21] L. Lovei, M. Tejfel, M. Meszaros, Z. Horvath, T. Kozsik: Comparing

Specification with Proved Properties of Clean Dynamics. Conference of

PhD students in Computer Science, Volume of extended abstracts, p. 71,

2006.

