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Fig. 1: From a 2D image of a person’s face (a) a dense set of facial landmarks is estimated using a fast, consistent cascade regression
framework (b), then a part-based 3D deformable model is applied (c) to reconstruct a dense 3D mesh of the face (d).

Abstract— To enable real-time, person-independent 3D reg-
istration from 2D video, we developed a 3D cascade regression
approach in which facial landmarks remain invariant across
pose over a range of approximately 60 degrees. From a single
2D image of a person’s face, a dense 3D shape is registered in
real time for each frame. The algorithm utilizes a fast cascade
regression framework trained on high-resolution 3D face-scans
of posed and spontaneous emotion expression. The algorithm
first estimates the location of a dense set of markers and
their visibility, then reconstructs face shapes by fitting a part-
based 3D model. Because no assumptions are required about
illumination or surface properties, the method can be applied
to a wide range of imaging conditions that include 2D video and
uncalibrated multi-view video. The method has been validated
in a battery of experiments that evaluate its precision of
3D reconstruction and extension to multi-view reconstruction.
Experimental findings strongly support the validity of real-time,
3D registration and reconstruction from 2D video. The software
is available online at http://zface.org.

I. INTRODUCTION

Face alignment is the problem of automatically locating
detailed facial landmarks across different subjects, illumina-
tions, and viewpoints. Previous methods can be divided into
two broad categories. 2D-based methods locate a relatively
small number of 2D fiducial points in real time while 3D-
based methods fit a high-resolution 3D model offline at a
much higher computational cost and usually require manual
initialization. 2D-based approaches include Active Appear-
ance Models [11], [28], Constrained Local Models [12], [31]
and shape-regression-based methods [16], [10], [37], [6],
[30]). These approaches train a set of 2D models, each of
which is intended to cope with shape or appearance variation
within a small range of viewpoints. In contrast, 3D-based
methods [5], [15], [41], [18] accommodate wide range of
views using a single 3D model. Recent 2D approaches enable
person-independent initialization, which is not possible with
3D approaches. 3D approaches have advantage with respect
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to representational power and robustness to illumination and
pose but are not feasible for generic fitting and real-time use.

Seminal work by Blanz et al. [5] on 3D morphable
models minimized intensity difference between synthesized
and source-video images. Dimitrijevic et al. [15] proposed a
3D morphable model similar to that of Blanz that discarded
the texture component in order to reduce sensitivity to illumi-
nation. Zhang et al. [41] proposed an approach that deforms
a 3D mesh model so that the 3D corner points reconstructed
from a stereo pair lie on the surface of the model. Both
[41] and [15] minimize shape differences instead of intensity
differences, but rely on stereo correspondence. Single view
face reconstruction methods [23], [20] produce a detailed
3D representation, but do not estimate the deformations over
time. Recently, Suwajanakorn et al. [33] proposed a 3D flow
based approach coupled with shape from shading to recon-
struct a time-varying detailed 3D shape of a person’s face
from a video. Gu and Kanade [18] developed an approach
for aligning a 3D deformable model to a single face image.
The model consists of a set of sparse 3D points and the
view-based patches associated with every point. These and
other 3D-based methods require precise initialization, which
typically involves manual labeling of the fiduciary landmark
points. The gain with 3D-based approaches is their far greater
representational power that is robust to illumination and
viewpoint variation that would scuttle 2D-based approaches.

A key advantage of 2D-based approaches is their much
lower computational cost and more recently the ability to
forgo manual initialization. In the last few years in particular,
2D face alignment has reached a mature state with the
emergence of discriminative shape regression methods [10],
[6], [13], [16], [32], [36], [27], [37], [30], [39], [22], [2],
[9]. These techniques predict a face shape in a cascade
manner: They begin with an initial guess about shape and
then progressively refine that guess by regressing a shape
increment step-by-step from a feature space. The feature
space can be either hand designed, such as SIFT features
[37], or learned from data [10], [6], [30].
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Most previous work has emphasized 2D face tracking and
registration. Relatively neglected is the application of cascade
regression in dense 3D face alignment. Only recently did Cao
et al. [9] propose a method for regressing facial landmarks
from 2D video. Pose and facial expression are recovered by
fitting a user-specific blendshape model to them. This method
then was extended to a person-independent case [8], where
the estimated 2D markers were used to adapt the camera
matrix and user identity to better match facial expression.
Because this approach uses both 2D and 3D annotations, a
correction step is needed to resolve inconsistency in the land-
mark positions across different poses and self-occlusions.

Our approach exploits 3D cascade regression, where the
facial landmarks are consistent across all poses. To avoid
inconsistency in landmark positions encountered by Cao et
al., the face is annotated completely in 3D by selecting a
dense set of 3D points (shape). Binary feature descriptors
(appearance) associated with a sparse subset of the landmarks
are used to regress projections of 3D points. The method
first estimates the location of a dense set of markers and
their visibility, then reconstructs face shapes by fitting a part-
based 3D model. The method was made possible in part by
training on the BU-4DFE [38] and BP-4D-Spontaneous [40]
datasets that contain over 300,000 high-resolution 3D face
scans. Because the algorithm makes no assumptions about
illumination or surface properties, it can be applied to a wide
range of imaging conditions. The method was validated in a
series of tests. We found that 3D registration from 2D video
effectively handles previously unseen faces with a variety of
poses and illuminations.

This paper advances two main novelties:
Dense cascade-regression-based face alignment

Previous work on cascade-regression-based face
alignment was limited to a small number of fiducial
landmarks. We achieve a dense alignment with
a manageable model size. We show that this is
achievable by using a relatively small number of
sparse measurements and a compressed represen-
tation of landmark displacement-updates. Further-
more, the facial landmarks are always consistent
across pose, eliminating the discrepancies between
2D and 3D annotations that have plagued previous
approaches.

Real-time 3D part-based deformable model fitting
By using dense cascade regression, we fit a 3D,
part-based deformable model to the markers. The
algorithm iteratively refines the 3D shape and the
3D pose until convergence. We utilize measure-
ments over multiple frames to refine the rigid 3D
shape.

The paper is organized as follows: Section II details the
dense 3D model building process and Section III describes
the model fitting method in details. The efficiency of our
novel solution method is illustrated by numerical experiments
in Section IV. Conclusions are drawn in Section V.

Notations. Vectors (a) and matrices (A) are denoted by
bold letters. An u ∈ Rd vector’s Euclidean norm is ‖u‖2 =

√
∑

d
i=1 u2

i . B = [A1; . . . ;AK ] ∈ R(d1+...+dK)×N denotes the
concatenation of matrices Ak ∈ Rdk×N .

II. DENSE FACE MODEL BUILDING
In this section we detail the components of the dense 3D

face model building process.

A. Linear Face Models

We are interested in building a dense linear shape model.
A shape model is defined by a 3D mesh and, in particular, by
the 3D vertex locations of the mesh, called landmark points.
Consider the 3D shape as the coordinates of 3D vertices that
make up the mesh:

x = [x1;y1;z1; . . . ;xM;yM;zM], (1)

or, x= [x1; . . . ;xM], where xi = [xi;yi;zi]. We have T samples:
{x(t)}T

t=1.
We assume that – apart from scale, rotation, and translation

– all samples {x(t)}T
t=1 can be approximated by means of a

linear subspace.
The 3D point distribution model (PDM) describes non-

rigid shape variations linearly and composes it with a global
rigid transformation, placing the shape in the image frame:

xi = xi(p) = sR(x̄i +ΦΦΦiq)+ t (i = 1, . . . ,M), (2)

where xi(p) denotes the 3D location of the ith landmark and
p = {s,α,β ,γ,q, t} denotes the parameters of the model,
which consist of a global scaling s, angles of rotation in
three dimensions (R = R1(α)R2(β )R3(γ)), a translation t
and non-rigid transformation q. Here x̄i denotes the mean
location of the ith landmark (i.e. x̄i = [x̄i; ȳi; z̄i] and x̄ =
[x̄1; . . . ; x̄M]). The d pieces of 3M dimensional basis vectors
are denoted with ΦΦΦ = [ΦΦΦ1; . . . ;ΦΦΦM] ∈ R3M×d .

Vector q represents the 3D distortion of the face in the
3M×d dimensional linear subspace. To build this model we
used high-resolution 3D face scans. We describe this in the
next subsection.

B. Datasets

The algorithm was trained on two related 3D datasets.
They were BU-4DFE [38] and BP4D-Spontaneous [40].

BU-4DFE consists of approximately 60,600 3D frame
models from 101 subjects (56% female, 44% male). Subjects
ranged in age from 18 years to 70 years and were ethnically
and racially diverse (European-American, African-American,
East-Asian, Middle-Eastern, Asian, Indian, and Hispanic
Latino). Subjects were imaged individually using the Di3D
(Dimensional Imaging [14]) dynamic face capturing system
while posing six prototypic emotion expressions (anger,
disgust, happiness, fear, sadness, and surprise). The Di3D
system consisted of two stereo cameras and a texture video
camera arranged vertically. Both 3D model and 2D texture
videos were obtained for each prototypic expression and
subject. Given the arrangement of the stereo cameras, frontal
looking faces have the most complete 3D information and
smallest amount of texture distortion.



Fig. 2: The 2D annotation of a profile-view image mapped on a
frontal view face. Note, that certain landmarks (eyebrow, jawline)
do not correspond to the same points on the two views because of
the different head-poses and self-occlusions.

The 3D models of 3D video sequences have a resolu-
tion of approximately 35,000 vertices. BP-4D-Spontaneous
dataset [40] consists of over 300,000 frame models from 41
subjects (56% female, 48.7% European-American, average
age 20.2 years) of similarly diverse backgrounds to BU-
4DFE. Subjects were imaged using the same Di3D system
while responding to a varied series of 8 emotion inductions
that elicited spontaneous expressions of amusement, surprise,
fear, anxiety, embarrassment, pain, anger, and disgust. The
3D models range in resolution between 30,000 and 50,000
vertices. For each sequence, manual FACS coding [17] by
highly experienced and reliable certified coders was obtained.

For training, we selected 3000 close-to-frontal frames
from each dataset, (i.e., 6000 frames in total). In BU-
4DFE, we sampled uniformly distributed frames from each
sequence. In BP4D-Spontaneous, we sampled frames based
on the available FACS (Facial Action Coding System [17])
annotation to include a wide range of expressions. Some 3D
meshes in the two datasets are corrupted or noisy. During
the selection we eliminated meshes that had large error.

C. 2D vs. 3D Annotation

Automatic face alignment requires a large number of
training examples of annotated images. Annotation is usually
done using 2D images, where the annotator selects the loca-
tions of fiducial points around permanent facial features (e.g.,
brows and eyes). For frontal faces, reliable annotation can be
achieved. As face orientation varies from frontal, however,
annotated points lose correspondence. Pose variation results
in self-occlusion that confounds landmark annotation. For
example, consider the landmarks on the eyebrow and jawline.
With increasing rotation and associated self-occlusion, anno-
tations no longer correspond to the same landmarks on profile
and frontal view images. See Figure 2 for an illustration of
this problem. This issue can be alleviated by using 3D face-
scans and annotating the 3D meshes themselves, instead of
the 2D images.

The 3D meshes were manually annotated with 77 land-
marks, corresponding to facial fiducial points. This coarse set
of markers had the same semantic meaning across subjects
and expressions. Figure 3 shows the annotated and rotated
meshes with the annotated markers and the corresponding
depth maps. Since the annotation is 3D, we can identify the
self-occluded markers from every pose.

The time-consuming annotation process can be accelerated

Fig. 3: The 77 point annotation of the 3D mesh (top-left image),
and profile views (30-60-90 degrees of yaw rotation). The color of
the markers indicate the visibility from the given viewpoint (green
– visible, red – occluded). The bottom row shows the corresponding
depth images.

Fig. 4: Surface tessellation using the adaptive refinement scheme.
The vertices are evenly distributed on the surface and they follow
the original geometry.

by using the semi-automatic approach of Baltrusaitis et al.
[4].

D. Dense 3D Correspondence

While the coarse set of manually annotated markers has
the same semantic meaning across subjects and expressions,
to create a dense model that spans the data of multiple
subjects requires establishing dense point-to-point correspon-
dences among them [5], [1]. This means that the position of
each vertex may vary in different samples, but its context
label should remain the same. To establish dense correspon-
dence, we used the Wave Kernel Signature (WKS) [3].

WKS is a novel shape feature descriptor. It is based on the
Laplace–Beltrami operator [25] and carries a physical inter-
pretation: it arises from studying the Schrödinger equation
governing the dissipation of quantum mechanical particles on
the geometric surface. The WKS allows for accurate feature
matching (see [3] for more details).

The number of vertices and their locations vary across
the 3D face scans. To establish a reference shape, we used
ordinary Procrustes analysis [21] with the 77 3D markers
and registered each mesh to the same frame.

We then calculated a dense mean shape by uniformly
subsample the meshes down to 5000 vertices and calculated
WKS descriptors for this reference shape as well.

We are interested in a model where we can easily control
the level of detail of the 3D mesh. To build such a model, we
employed a coarse-to-fine mesh refinement that resembles an
adaptive

√
3-subdivision [24] scheme. We started from the

reference shape and its triangulated 77-points mesh. Since
this annotation corresponds to fiducial points and is not based



on uniform sampling or surface complexity, applying the
original

√
3-subdivision would result in unnecessary details

around these markers. Therefore, in every step we apply the
subdivision only on the triangle with the largest surface area
and project the centroid back to the dense mesh. This pro-
cedure results in a tessellation, where the vertices are evenly
distributed on the surface, follow the original geometry and
the level of detail can be easily managed. After we tessellated
the reference mesh, we identify the corresponding vertices
from every mesh by finding the closest WKS match. See
Figure II-C for an illustration of the method. We stopped
the process at 1024 vertices. In Section IV-B we give a
more detailed explanation why we choose this level of detail.
We used these 1024 vertices meshes to build our part-based
linear model.

E. Part-based model building

In Eq. (2) one can assume that the prior of the parameters
follow a normal distribution with mean 0 and variance ΛΛΛ at a
parameter vector q: p(p) ∝ N(q;0,ΛΛΛ) and can use Principal
Component Analysis (PCA) to determine the d pieces of 3M
dimensional basis vectors (ΦΦΦ = [ΦΦΦ1; . . . ;ΦΦΦM]∈R3M×d). This
approach has been used successfully in a broad range of face
alignment techniques, such as Active Appearance Models
[28] or 3D Morphable Models [5]. This procedure would
result in a holistic shape model with a high compression
rate, but on the on the other hand, its components have a
global reach and they lack of semantic meaning.

The deformations on the face can be categorized into two
separate subsets: rigid (the shape of the face) and non-rigid
(facial expressions) parts. We reformulate Eq. (2) to model
these deformations separately:

xi = xi(p) = sR(x̄i +ΘΘΘir+ΨΨΨis)+ t (i = 1, . . . ,M), (3)

where the d pieces of 3M dimensional basis vectors (ΘΘΘ =
[ΘΘΘ1; . . . ;ΘΘΘM] ∈ R3M×d) describes the rigid, and the the e
pieces of 3M dimensional basis vectors (ΨΨΨ= [ΨΨΨ1; . . . ;ΨΨΨM]∈
R3M×e) describes the non-rigid deformations.

To build the rigid part, we selected neutral frames from
each subjects and applied PCA to determine the basis vectors
(ΘΘΘ) and their mean (x̄). This provide us a holistic linear
subspace, that describes the variation of the face shape only.
Note that the neutral face is only required during the model
building, it is not required for testing.

To build a linear subspace that describes the non-rigid
deformations (ΨΨΨ) we follow the method of Tena et al [34].
The goal is to build a model that composed of a collection
of PCA part-models that are independently trained but share
soft boundaries. This model generalizes to unseen data better
than the traditional holistic approach. To create the part-
based-models, we group vertices that are highly correlated
and form compact regions, since these regions will be better
compressed by PCA. To find a data-driven segmentation
of the facial expressions, we used all the 6000 frames
we selected from the BU-4DFE and BP-4D-Spontaneous
datasets. From each mesh, we subtracted the person’s own

neutral face to remove all the personal variation from the
data. Note, that if we would have used the global mean face
for the subtraction (x̄) that would leave some of the rigid
variation in the dataset.

Our data D ∈R6000×3072 consist of 6000 frames and 1024
3D vertices. We split D into three subsets Dx,Dy,Dz ∈
R6000×1024 each containing the corresponding spatial co-
ordinate of the vertices. To describe the measurement of
the correlation between vertices, the normalized correlation
matrices are computed from Dx,Dy,Dz and then averaged
into a global correlation matrix C. Vertices in the same
region should also be close to each other on the face surface.
Accordingly, we also compute the inter-vertex distance on
the mesh as described in [34] for the isomap algorithm [35]
to form a distance matrix G and normalized it to the [0,1]
scale. Both matrices are added into an affinity matrix A and
spectral clustering were performed on it using the method of
Ng et al. [29].

In our experiment we obtained 12 compact clusters instead
of 13 as reported in [34]. A possible reason for this is that we
lowered the 11 forehead markers from the manual annotation
before calculating the dense mesh, resulting in a missing
separate forehead region. These markers were on the border
of the hair region, which was not estimated correctly by the
imaging hardware in the dataset.

III. MODEL FITTING

In this section we describe the dense cascade regression
and the 3D model fitting process.

A. Training dataset

Automatic face alignment requires a large number of
training examples of annotated images. We used our 6000
annotated meshes and from each mesh we generated 63 dif-
ferent views in 20 degrees yaw rotation and 15 degrees pitch
rotation increments (9 yaw and 7 pitch rotations in total). Re-
sulting in the total number of 378,000 frames. For each view
we calculated the corresponding rotated 3D markers and their
2D projections with self-occlusion information. Since the 3D
meshes do not contain backgrounds, we included randomly
selected non-face backgrounds in the final 2D images to
increase the variety. These generated and annotated images
were used to train a dense, cascade regression based method,
that we detail in the next subsection.

B. Dense Cascade Regression

In this section we describe the general framework of dense
cascade regression for face alignment. We build on the work
of Xiong and De la Torre [37]. Given an image d ∈Ra×1 of
a pixels, d(y) ∈Rb×1 indexes b markers in the image. Let h
to be a feature extraction function (e.g. HOG, SIFT or binary
features) and h(d(y)) ∈ RFḃ×1 in the case of extracting
features of length F . During training we will assume that
the ground truth location of the b markers are known. We
refer to them as y?.

We used a face detector on the training images to provide
an initial configuration of the markers (y0), which correspond



Fig. 5: Marker RMSE as a function of cascades. 1 RMSE unit
correspond to 1 pixel error in all markers. The inter-ocular distance
was normalized to 100 pixels.

to the frontal projection of the 3D reference face built in
Section II-D.

In this framework, face alignment can be framed as
minimizing the following function over (∆y):

f (y0 +∆y) = ‖h(d(y0 +∆y))−β?‖2
2 (4)

where β? = h(d(y?)) represents the feature values in the
ground truth markers.

The feature extraction function (h) can be highly non-
linear and minimizing eq. (4) would require numerical ap-
proximations, which are computational expensive. Instead
we learn a series of linear regressor matrices (Ri), such
that it produces a sequence of updates starting from y0 that
converges to y? in the training data:

∆yi = Ri−1βi−1 +bi−1 (5)

yi = yi−1 +∆yi→ y? (6)

In our case, the annotation y consist of the projected 2D
locations of the 3D markers and their corresponding visibility
information:

y = [x1;y1;v1; . . . ;xM;yM;vM], (7)

where vi ∈ [0,1] indicates if the marker is visible (vi = 1)
or not (vi = 0).

C. 3D Model Fitting

An iterative method was used [18] to register 3D model
on the 2D landmarks. The algorithm iteratively refines the
3D shape and 3D pose until convergence, and estimates the
rigid (p = {s,α,β ,γ, t}) and non-rigid transformations (q in
the case of holistic model or r and s in the case of the part-
based one).

To calculate of the non-rigid part the method requires the
pseudo-inverse of the linear basis. In the holistic model ΦΦΦ

was acquired by PCA and therefore its pseudo-inverse is its
transpose. In the part-based model we have to re-calculate
the pseudo-inverse of [ΘΘΘ,ΨΨΨ].

Note that in both models, the fitting can be done even if
we restrict the process to a limited set of visible landmarks
(MObs ≤M).

Fig. 6: The reconstruction error as a function of vertices. The solid
line (shaded region) shows the mean error (standard deviation).

In this case we just remove the rows corresponding to
the occluded markers from the basis (ΦΦΦ or [ΘΘΘ,ΨΨΨ]) and re-
calculate the pseudo-inverse for the fitting.

IV. EXPERIMENTS

We conducted a battery of experiments to evaluate the
precision of 3D reconstruction and extensions to multi-view
reconstruction.

A. Feature space for the cascade regression

In this experiment we evaluated SIFT [26] and localized
binary features [7] for training the regression cascades. For
each shape in the training set we generated 10 samples
using the Monte-Carlo procedure by perturbing the model
parameters of the ground truth shapes. SIFT and binary
descriptors were computed on 32x32 local patches around
the markers. In the case of binary features, we used a low-
rank PCA [19] to learn a compressed representation of the
patches. We kept 128 dimensions in the process for each
marker.

We used a five-fold cross-validation to estimate the marker
estimation precision, measured by the root mean squared
error of marker displacements. We found that binary feature
representation learned from the data outperformed hand
crafted SIFT features (see Figure 5).

Binary features are a magnitude faster than SIFT, allowing
more markers to be measured. We varied the number of
observed vertices using binary features from 77 to 256. The
effect in terms of RMSE is noticeable, but not significant.
After 6-7 iterations, we observed a plateauing effect in the
RMSE.

We also investigated the effect of different illumination
conditions by varying the level of ambient light and adding
directional light. The method was robust to these perturba-
tions. Binary features, like SIFT features, were insensitive to
photometric variation in the input images.

B. Optimal density of the model

In this experiment, we studied the reconstruction precision
of the 3D model with different level of details. We identified
a minimum set of vertices that are required in the model to
reconstruct the 3D geometry of the face with high precision.

First we registered and tessellated the ground truth meshes
according to Section II-D.
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Fig. 7: Visualizing the reconstructed 3D meshes with different
levels of detail. (a)-(e) Meshes consisting of 77, 128, 256, 512
and 1024 vertices, respectively. (f)-(j) The corresponding absolute
depth map differences comparing with the ground truth mesh.

We rendered the reconstructed 3D shapes and their cor-
responding depth maps. Accurate depth maps of the ground
truth meshes are also computed for comparison. The dif-
ferences between the two depth maps are computed and
they were summed up within the area bounded by the face
outline. The final score was normalized to the area of the
original face. This normalized score served as the measure
for evaluating the reconstruction precision (Reconstruction
Error). Since the tessellation is done in an adaptive manner,
this provides an easy way to vary the number of vertices. We
varied this number between 77 and 1024 on a logarithmic
scale

The results are summarized in Figure 6. The original
data consist of more than 30,000 vertices. The figure shows
that we can precisely approximate them using around 1,000
vertices. We suspended refinement at M = 1024 vertices.

Figure 7 shows the different levels of detail and the
corresponding absolute depth map differences comparing
with the ground truth mesh.

C. Number of measurements and iterations for fitting

Two important questions are the number of vertices to
measure and the number of iteration steps needed during
model fitting (Section III-C). We expected that a much
smaller subset of vertices would be sufficient for the fitting
given the inherent 3D surface constraints.

To test this hypothesis, we kept the total number of vertices
in the model fixed (M = 1024) and varied the number of
vertices (MObs) from 77 to 1024 on a logarithmic scale. For
selecting the observed vertices we used the same scheme as
before: we used the first 77, 128, 256, etc. vertices from the
refining process. This way we add more detail to the mesh
and more constraint to the model fitting.

Another parameter is the number of iterations during the
model fitting. We varied the number of iterations between 5
and 40 on a logarithmic scale. Figure 8 shows reconstruction
error as a function of observed vertices and the number of
iteration steps.

The figure shows that there is no further performance
gain measuring more than 128 vertices. The size of the
cascade regressor matrices and the fitting speed depends on

Fig. 8: The reconstruction error as a function of observed vertices
MObs and the number of iteration steps using a single measurement.

Fig. 9: The reconstruction error as a function of observed vertices
MObs using two synchronized cameras that are separated by 15, 30
and 45 degrees of yaw rotations apart.

the number of observed vertices. As we seen, we can keep
this number low without the loss of precision.

The number of iterations during the fitting had a significant
effect on the reconstruction error. Increasing the number of
iterations steps has no effect on the model size.

D. Multi-view measurements

Up until now, we used only a single frame to locate the
landmarks and fit the 3D model. In this experiment, we
investigated the performance gain when we have access to
multiple measurements for each time-step.

Let us assume that we have a time-synchronized multi-
camera setup that provides two frames at every time-step,
but the exact camera locations and the camera calibration
matrices are unknown.

We fixed the total number of vertices in the model (M =
1024) and varied the number of observed vertices (MObs)
between 77 and 512 on a logarithmic scale. For selecting
the observed vertices, we used the same scheme as before:
we used the first 77, 128, 256, etc. vertices from the refining
process. This way we add more detail to the mesh and more
constraint to the model fitting.

Figure 9 shows the reconstruction error as a function of
observed vertices MObs using two synchronized cameras that
are separated by 15, 30 and 45 degrees of yaw rotations
apart. The number of iterations was fixed in 10 steps.



(a)
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Fig. 10: Examples from (a) Multi-PIE with various illuminations and head poses, (b) RU-FACS tracking sequences and (c) celebrities
with profile view renders using the high-resolution 3D shape. The contours of key facial parts are highlighted in green for display purpose.

The figure shows that larger viewpoint-angles yielded
lower reconstruction error.

V. CONCLUSIONS AND FUTURE WORK

Real-time, dense 3D face alignment is a challenging
problem for computer vision. In the last few years 2D face
alignment has reached a mature state with the emergence of
discriminative shape regression methods. On the other hand,
relatively neglected is the application of cascade regression
in dense 3D face alignment. To afford real-time, person-
independent 3D registration from 2D video, we developed
a 3D cascade regression approach in which facial landmarks
remain invariant across pose over a range of approximately

60 degrees. From a single 2D image of a person’s face, a
dense 3D shape is registered in real time for each frame.

Our present method has two specific features.

Consistent 3D Annotation
Landmark annotation in 2D is confounded by in-
consistency in the landmark positions across dif-
ferent poses and self-occlusions. To avoid incon-
sistency in landmark positions, we annotate the
meshes themselves completely in 3D by selecting
a dense set of 3D points.

Sparse Measurements for Dense Registration
By using only a sparse number of measurements,



the 3D reconstruction can be carried out with high
precision. This results in real-time performance and
a manageable model size. Our MATLAB imple-
mentation runs at 50 fps using a single core of an
i7 processor.

We validated the method in a series of experiments that
evaluate its precision of 3D reconstruction and extension
to multi-view reconstruction. Experimental findings strongly
support the validity of real-time, 3D registration and recon-
struction from 2D video.
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