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Abstract. 2D alignment of face images works well provided images are
frontal or nearly so and pitch and yaw remain modest. In spontaneous
facial behavior, these constraints often are violated by moderate to large
head rotation. 3D alignment from 2D video has been proposed as a so-
lution. A number of approaches have been explored, but comparisons
among them have been hampered by the lack of common test data. To
enable comparisons among alternative methods, The 3D Face Alignment
in the Wild (3DFAW) Challenge, presented for the first time, created an
annotated corpus of over 23,000 multi-view images from four sources to-
gether with 3D annotation, made training and validation sets available
to investigators, and invited them to test their algorithms on an inde-
pendent test-set. Eight teams accepted the challenge and submitted test
results. We report results for four that provided necessary technical de-
scriptions of their methods. The leading approach achieved prediction
consistency error of 3.48%. Corresponding result for the lowest ranked
approach was 5.9%. The results suggest that 3D alignment from 2D
video is feasible on a wide range of face orientations. Differences among
methods are considered and suggest directions for further research.
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1 Introduction

Face alignment – the problem of automatically locating detailed facial landmarks
across different subjects, illuminations, and viewpoints – is critical to face anal-
ysis applications, such as identification, facial expression analysis, robot-human
interaction, affective computing, and multimedia.

Previous methods can be divided into two broad categories: 2D approaches
and 3D approaches. 2D approaches treat the face as a 2D object. This assump-
tion holds as long as the face is frontal and planar. As face orientation varies
from frontal, 2D annotated points lose correspondence. Pose variation results
in self-occlusion that confounds landmark annotation. 2D approaches include
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Active Appearance Models [5,16], Constrained Local Models [6,21] and shape-
regression-based methods [8,4,24,18]). These approaches train a set of 2D models,
each of which is intended to cope with shape or appearance variation within a
small range of viewpoints.

3D approaches have strong advantages over 2D with respect to representa-
tional power and robustness to illumination and pose. 3D approaches [2,7,27,12]
accommodate a wide range of views. Depending on the 3D model, they easily
can accommodate a full range of head rotation. Disadvantages are the need for
3D images and controlled illumination, as well as the need for special sensors or
synchronized cameras in data acquisition.

Because these requirement often are difficult to meet, 3D alignment from 2D
video or images has been proposed as a potential solution. A number of research
groups have made advances in 3D alignment from 2D video [22,20,15,19,17]. How
these various methods compare is relatively unknown. No commonly accepted
evaluation protocol exists with which to compare them.

To enable comparisons among alternative methods of 3D alignment from 2D
video, we created an annotated corpus of multi-view face images, partitioned
training and hold-out test sets, and invited investigators to enter competition.
The corpus includes images obtained under a range of conditions from highly
controlled to in-the-wild. The resulting challenge provides a benchmark with
which to evaluate 3D face alignment methods and enable researchers to identify
new goals, challenges, and targets. This paper describes the 3D Face Alignment
in the Wild Challenge and presents an overview of the results. The Challenge was
held in conjunction with the 14th European Conference on Computer Vision.

2 Dataset

Four databases were used for the Challenge. They were the BU-4DFE [25],
BP4D-Spontaneous [26], MultiPIE [11], and time-sliced videos from the inter-
net. All four databases were annotated in a consistent way using a model-based
structure-from-motion technique [14]. To increase variability in head rotation,
we synthesized images across a range of pitch and yaw orientations as explained
below.

2.1 BU-4DFE and BP-4D Spontaneous

BU-4DFE consists of approximately 60,600 3D frame models from 101 subjects
(56% female, 44% male). Subjects ranged in age from 18 to 70 years and were eth-
nically and racially diverse (European-American, African-American, East-Asian,
Middle-Eastern, Asian, Indian, and Hispanic Latino). Subjects were imaged in-
dividually using a Di3D (Dimensional Imaging5) dynamic face capturing system
while posing six prototypic emotion expressions (anger, disgust, happiness, fear,
sadness, and surprise). The Di3D system consisted of two stereo cameras and a

5 http://www.di3d.com
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(a) BP4D-Spontaneous

(b) MultiPIE

(c) Time-Sliced

Fig. 2: Selected examples from the benchmark datasets. Selected views from the BP4D-
Spontaneous (a), MultiPIE (b), and Time-Sliced (c) dataset. The contours of key facial
parts are highlighted in blue for display purpose.

texture video camera arranged vertically. Both 3D model and 2D texture videos
were obtained for each prototypic expression and subject. Given the arrange-
ment of the stereo cameras, frontal looking faces have the most complete 3D
information and smallest amount of texture distortion.

BP-4D-Spontaneous dataset [26] consists of over 300,000 frame models from
41 subjects (56% female, 48.7% European-American, average age 20.2 years) of
similarly diverse backgrounds to BU-4DFE. Subjects were imaged using the same
Di3D system while responding to a varied series of 8 emotion inductions; these
were intended to elicite spontaneous facial expressions of amusement, surprise,
fear, anxiety, embarrassment, pain, anger, and disgust. The 3D models range in
resolution between 30,000 and 50,000 vertices. For each sequence, manual FACS
coding [9] by highly experienced and reliable certified coders was obtained.

In BP-4DFE, 1365 uniformly distributed frames were sampled. In BP4D-
Spontaneous, 930 frames were sampled based on FACS (Facial Action Coding
System [9]) annotation to include a wide range of expressions.

The selected 3D meshes were manually annotated with 66 landmarks, referred
to as facial fiducial points. The annotations were independently cross-checked
by another annotator. Since the annotation was 3D, we can identify the self-
occluded landmarks from every pose.

For each of the final 2295 annotated meshes, we synthesized 7 different views
using a weak perspective camera model. These views span the range of [-45,45]
degrees of yaw rotations in 15 degrees increments. The pitch rotation was ran-
domly selected for each view from the range of [-30,30] degrees. Figure 2 shows
selected examples. In total 16,065 frames were synthesized. For each view we cal-
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culated the corresponding rotated 3D landmarks and their 2D projections with
self-occlusion information. Since the 3D meshes lacked backgrounds, we added
randomly selected non-face backgrounds from the SUN2012 dataset [23] in the
final 2D images.

2.2 MultiPIE

Multi-PIE face database [11] contains images from 337 subjects acquired in a
wide range of pose, illumination, and expression conditions. Images were cap-
tured in rapid order in a multi-camera, multi-flash recording. For the current
database, we sampled 7000 frames from 336 subjects. For each frame, the visible
portion of the face was annotated with 66 2D landmarks. Self-occluded land-
marks were marked and excluded from the annotation.

2.3 Time-sliced Videos

The above datasets were recorded in a laboratory under controlled conditions.
To include uncontrolled (in-the-wild) images in the challenge, we collected time-
sliced videos from the internet. In these videos subjects were surrounded by
an array of still cameras. During the recording, the subjects displayed various
expressions while the cameras fired simultaneously. Single frames from each cam-
era were arranged consecutively to produce an orbiting viewpoint of the subject
frozen in time.

We sampled 541 frames that correspond to several viewpoints from different
subjects and expressions. Due to the unconstrained setting, the number of view-
points per subjects varied between 3 and 7 views. For each frame, the visible
portion of the face was annotated with 66 2D landmarks. Self-occluded land-
marks were marked and excluded from the annotation.

2.4 Consistent 3D Landmark Annotation

Providing consistent 3D landmark annotation across viewpoints and across
datasets was paramount for the challenge. In the case of BU4D and BP4D-
Spontaneous data, we had 3D landmark annotation that is consistent across
synthesized views of the same face. To provide the same consistency for the other
two datasets, we employed a two-step procedure. First we built a deformable 3D
face model from the annotated 3D meshes of BU4D and BP4D-Spontaneous.
Second, we used a model-based structure-from-motion technique on the multi-
view images [14].

Linear Face Models A shape model is defined by a 3D mesh and, in particular,
by the 3D vertex locations of the mesh, called landmark points. Consider the 3D
shape as the coordinates of 3D vertices that make up the mesh:

x = [x1; y1; z1; . . . ;xM ; yM ; zM ], (1)
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or, x = [x1; . . . ;xM ], where xi = [xi; yi; zi].

The 3D point distribution model (PDM) describes non-rigid shape variations
linearly and composes it with a global rigid transformation, placing the shape
in the image frame:

xi = xi(p,q) = sR(x̄i + Φiq) + t (i = 1, . . . ,M), (2)

where xi(p,q) denotes the 3D location of the ith landmark and p =
{s, α, β, γ, t} denotes the rigid parameters of the model, which consist of a global
scaling s, angles of rotation in three dimensions (R = R1(α)R2(β)R3(γ)),
a translation t. The non-rigid transformation is denoted with q. Here x̄i de-
notes the mean location of the ith landmark (i.e. x̄i = [x̄i; ȳi; z̄i] and x̄ =
[x̄1; . . . ; x̄M ]). The d pieces of 3M dimensional basis vectors are denoted with
Φ = [Φ1; . . . ;ΦM ] ∈ R3M×d. Vector q represents the 3D distortion of the face in
the 3M × d dimensional linear subspace.

To build this model we used the 3D annotation from the selected BU-4DFE
[25] and BP4D-Spontaneous [26] frames.

3D Model Fitting To reconstruct the 3D shape from the annotated 2D shapes
(z) we need to minimize the reconstruction error using eq. (2):

arg min
p,q

M∑
i=1

‖Pxi(p,q)− zi‖22 (3)

Here P denotes the projection matrix to 2D, and z is the target 2D shape.
An iterative method can be used to register 3D model on the 2D landmarks [12].
The algorithm iteratively refines the 3D shape and 3D pose until convergence,
and estimates the rigid (p = {s, α, β, γ, t}) and non-rigid transformations (q).

Applying eq. (3) on a single image frame from a monocular camera has a
drawback of simply ”hallucinating” a 3D representation from 2D. From a single
viewpoint there are multiple solutions that satisfy eq. (3). To avoid the problem
of single frame 2D-3D hallucination we apply the method simultaneously across
multiple image-frames of the same subject. Furthermore, we have partial land-
mark annotation in the MultiPIE and TimeSliced data due to self-occlusion.
We can incorporate the visibility information of the landmarks in eq. (3), by
constraining the process to the visible landmarks.

Let z(1), . . . , z(C) denote the C number of 2D measurements from the dif-
ferent viewpoints of the same subject. The exact camera locations and camera
calibration matrices are unknown. In this case all C measurements represent the
same 3D face, but from a different point of view. We can extend eq. (3) to this
scenario by constraining the reconstruction to all the measurements:

arg min
p(1),...,p(C),

q

C∑
k=1

∑
i∈ξ(k)

∥∥∥Pxi(p
(k),q)− z

(k)
i

∥∥∥2
2

(4)
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Fig. 3: The 3D shapes from the different views from the same subject and expression
are consistent, they can be superimposed on each other in a canonical space.

where superscripts (k) denote the kth measurement, with a visibility set of ξ(k).
Minimizing eq. (4) can be done by iteratively refining the 3D shape and 3D pose
until convergence. For more details see [13,14].

3 Evaluation Results

3.1 Data Distribution

Data were sorted into three subsets (training, validation, and test sets) and dis-
tributed in two phases using the CodaLab platform6. In Phase-I, participants
were granted access to the complete training set of images, ground truth 3D land-
marks, and face bounding boxes and the validation set images and their bounding
boxes. Participants became acquainted with the data and could train and per-
form initial evaluations of their algorithms. In Phase-II, they were granted access
to the ground truth landmarks of the validation set and images and bounding
boxes from the final test set. See Table 1 for more details.

Table 1: Distribution of the different sets.

Training Validation Test Total

BP-4DFE 5677 1960 1918 9555
BP-4D-Spontaneous 3794 1365 1351 6510

MultiPIE 4200 1400 1400 7000
TimeSliced 298 243 541

3.2 Performance Measures

For comparative evaluation in the Challenge, we used the widely accepted evalu-
ation matrices Ground Truth Error (GTE) and Cross View Ground Truth Con-
sistency Error (CVGTCE). GTE is the average point-to-point Euclidean error
normalized by the outer corners of the eyes (inter-ocular). It is computed as:

6 https://competitions.codalab.org/
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GTE(xpre,xgt) =
1

M

M∑
k=1

‖xk − yk‖2
di

(5)

where M is the number of points, xgt is the ground truth 3D shape, xpre is
the predicted shape and di is the inter-ocular distance for the i -th image.

CVGTCE evaluates cross-view consistency of the predicted landmarks from
the 3D model. It is computed as:

CV GTCE(xpre,xgt,p) =
1

M

M∑
k=1

‖(sRxpre
k + t)− xgt

k ‖2
di

(6)

where the rigid transformation parameters p = {s,R, t} can be obtained in
a similar fashion as in eq. (3).

3.3 Participation

Eight teams submitted results. Of these, four completed the challenge by submit-
ting a technical description of their methods. In the following we briefly describe
their methods. More detail is provided in the respective papers. The final scores
for all methods are available on the competition website7.

Zavan et al. [1] proposed a method that requires only the nose region for
assessing the orientation of the face and the position of the landmarks. First,
a Faster R-CNN was trained on the images to detect the nose. Second, a CNN
variant was trained to categorize the face into several discretized head-pose cat-
egories. In the final step, the system imposes the average face landmarks onto
the image using the previously estimated transformation parameters.

Zhao et al. [28] used a deep convolutional network based solution that maps
the 2D image of a face to its 3D shape. They defined two criteria for the op-
timization: (i) learn facial landmark locations in 2D (ii) and then estimate the
depth of the landmarks. Furthermore, a data augmentation approach was used
to aid the learning. The latter involved applying 2D affine transformations to
the training set and generating random occluding boxes to improve robustness
to partial occlusion.

Gou et al. [10] utilized a regression-based 3D face alignment method that
first estimates the location of a set of landmarks and then recovers 3D face
shape by fitting a 3D morphable model. An alternative optimization method was
employed for the 3D morphable model fitting to recover the depth information.
The method incorporates shape and local appearance information in a cascade
regression framework to capture the correspondence between pairs of points for
3D face alignment.

7 https://competitions.codalab.org/competitions/10261
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Bulat and Tzimiropoulos [3] proposed a two-stage alignment method. At the
first stage, the method calculates heat-maps of 2D landmarks using convolutional
part heat-map regression. In the second stage, these heat-maps along with the
original RGB image were used as an input to a very deep residual network to
regress the depth information.

3.4 Results

Table 2 shows the Prediction Consistency Errors (CVGTCE) and Standard Er-
rors (GTE) of the different methods on the final test set. Figure 4 shows the
cumulative error distribution curves (CED) of the different methods.

Table 2: Prediction Consistency Error (CVGTCE) and Standard Error (GTE) of the
different methods on the Test set.

Rank Team CVGTCE % GTE %

1 Bulat and Tzimiropoulos [3] 3.4767 4.5623
2 Zhao et al. [28] 3.9700 5.8835
3 Gou et al. [10] 4.9488 6.2071
4 Zavan et al. [1] 5.9093 10.8001

Fig. 4: Cumulative error distribution curves (CED) of the different methods for Cross-
View Consistency (left) and Standard Error (right).

4 Conclusion

This paper describes the First 3D Face Alignment in the Wild (3DFAW) Chal-
lenge held in conjunction with the 14th European Conference on Computer
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Vision 2016, Amsterdam. The main challenge of the competition was to esti-
mate a set of 3D facial landmarks from still images. The corpus includes im-
ages obtained under a range of conditions from highly controlled to in-the-wild.
All image sources have been annotated in a consistent way, the depth informa-
tion has been recovered using a model-based Structure from Motion technique.
The resulting challenge provides a benchmark with which to evaluate 3D face
alignment methods and enable researchers to identify new goals, challenges, and
targets.
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