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Abstract. Recent methods for facial landmark location perform well
on close-to-frontal faces but have problems in generalising to large head
rotations. In order to address this issue we propose a second order lin-
ear regression method that is both compact and robust against strong
rotations. We provide a closed form solution, making the method fast
to train. We test the method’s performance on two challenging datasets.
The first has been intensely used by the community. The second has
been specially generated from a well known 3D face dataset. It is consid-
erably more challenging, including a high diversity of rotations and more
samples than any other existing public dataset. The proposed method
is compared against state-of-the-art approaches, including RCPR, CG-
PRT, LBF, CFSS, and GSDM. Results upon both datasets show that
the proposed method offers state-of-the-art performance on near frontal
view data, improves state-of-the-art methods on more challenging head
rotation problems and keeps a compact model size.

1 Introduction

Facial landmark location consists of detecting a set of particular points on the
face. Usually these points have semantic meaning, their location being in highly
distinctive places around the eyes, mouth or nose. A set of such points is useful
for expressing both the rigid and non-rigid deformations of the face geometry.
Because facial geometry changes with identity, facial expression and head pose,
it is an important step in many automatic facial analysis tasks such as face recog-
nition, face expression recognition, face synthesis and age or gender estimation
[1].

A common approach for locating landmarks on the face is to model the
relation between the face appearance and its geometry. If we consider X∗ to be
the ground truth geometry, and Φ(I,X) a representation function of a geometry
X on an image I, then starting from an initial estimation X0 landmark location
can be formulated as an optimisation problem of the form:
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arg min
∆X

f(X0 +∆X) = ||Φ(I,X0 +∆X)− Φ(I,X∗)||22 (1)

Because Φ is a highly non-linear function, f is non-convex and has many
local minima, the problem becomes severe in the case of large variations of the
texture which is normally the case with rotations of the head and strong non-
rigid deformations. Additionally, successfully solving the optimisation problem
is highly dependent on the initialisation.

Historically, Active appearance models (AAM) [2] are one of the most used
methods for 2D face registration. They are an extension of active shape models
(ASM) [3] which encode both geometry and intensity information. More recently,
even though single step landmark location methods have been proposed [4, 5],
the most common approach is to model the relationship between texture and
geometry with a cascade of regression functions [6–12]. Features are extracted
from the current estimated geometry and passed to the learnt mapping in order
to update the geometry. This process is repeated iteratively for each step of the
cascade, applying a specific mapping to each. If we denote by Ri the regression
function at the ith step of the cascade, by Φi = Φ(I,Xi) the corresponding
representation and by bi a constant bias, then at every step of the cascade, the
geometry X will be updated in the following way:

Xi+1 = Xi + RiΦi + bi (2)

While most cascaded regression methods share this approach, considerable
variation can be found in representation, regression functions and initialisation
strategies. The simplest way to initialise the geometry is by starting with the
mean [9, 11, 8]. For faces, this works well in close-to-frontal scenarios but proves
inefficient when large pose variation occurs. A common solution is to try a set
of random initialisations and consider the median of the predictions as the fi-
nal solution [13, 6]. Unfortunately, this considerably increases the computational
cost. An alternative approach is to apply the initial part of the cascade and
continue only if the variance of the regressed shapes is low, which is a strong
predictor of convergence towards the global minimum [7]. If this is not the case
then a different set of initial shapes is generated. Even so, all these methods
are dependent on the initialisation and prove low generalisation to large head
pose rotation. A coarse-to-fine searching approach was recently proposed to deal
with the initialisation dependency problem [14]. A regression function is learnt
from a set of shapes generated according to a probabilistic distribution on the
shape space. A dominant set approach is used to eliminate outliers between the
regressed shapes in an unsupervised manner. From the filtered subset the centre
of a smaller region of the original space is computed and the process repeated un-
til convergence. While it prevents locality of the solutions it improves robustness
to large pose variation.

The work of Dollar et al. which proved influential in the field of facial land-
mark localisation, uses intensities of sparse sets of pixels at predefined locations
to represent texture in a shape indexed fashion for learning a fixed linear se-



Continuous Supervised Descent Method for Facial Landmark Localisation 3

quence of weak regressors [13]. In this way, representation’s output depends on
both the image data and the current estimate of the geometry. Some of the
methods propose to jointly learn the representation and the regression function
[6, 7, 11, 8]. In this sense, several shape indexed locations are randomly generated
and then selected based on a certain optimisation criteria. Alternatively, local
binary features are learnt for each landmark independently [8]. During test, very
fast landmark localisation is obtained. In a recent method [15], Difference of
Gaussians (DoG) features are selectively extracted from locations arranged in
a pattern inspired by the human visual system [16]. Learnt trees at early stages
tend to select indexed DoG features computed from distant sampling points
while trees at later stages tend to use nearby sampling points. Finally, a very
common problem of most of the proposed methods, the lack of sensitivity to
occlusions is tackled in the work of Burgos et al. [7]. They propose a method
that reduces exposure to outliers by detecting occlusions explicitly and using
robust shape-indexed features. It incorporates occlusion directly during learning
to improve shape estimation.

A distinct group of methods use predefined handcrafted representations while
learning the regression function from the data. For example, to overcome the
large computational time required by the regression of many generated shapes
at each stage more simple descriptors are used in the initial stages when coarse
localisation is performed. More complicated representations are used on final
stages when fine localisation takes place [14]. A particularly important set of
methods that use fixed representations are the ones derived from the Supervised
Descent Method (SDM) [9]. SDM uses simplified SIFT features and linear re-
gressors. As is the case of previous methods, SDM works well for near frontal
faces but fails on strong rotations. To overcome this problem, Global Supervised
Descent Method (GSDM) [10] introduced an approach which uses a sub-space
defined by a set of directions of maximum variance of the training data to parti-
tion the original feature space. Each partition shares a similar descent direction
for the training instances falling within it. A linear regressor is learnt for each
partition. However, GSDM suffers from two main problems. Both the number
of training instances and model size increase exponentially with the number of
sub-space dimensions.

In order to perform landmark localisation under strong rotations while keep-
ing a fast and compact model, this work proposes a continuous formulation of
GSDM. Instead of using the sub-space to partition the feature space as GSDM
does, it is used to describe a space of linear regressors. This is equivalent to
proposing a regressor which estimates the second derivative of the gradient, in-
stead of the first as a standard linear regressor would (e.g. in SDM). While this
formulation may not be as expressive as GSDM, the amount of memory and
training instances required increases linearly with the number of dimensions of
the sub-space. Also, the proposed formulation defines a specific linear regressor
for each instance.

In summary, our list of contributions is as follows:
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– we present a method that improves state-of-the-art results on strongly ro-
tated faces

– the trained models are small, the amount of memory and training instances
required increase only linearly with the number of dimensions of the sub-
spaces

– the method is fast to train due to its closed form solution
– we have synthesised largest 2D face dataset to date, with a challenging face

rotation distribution

The rest of the paper is organised as follows: in Section 2 we formulate the
proposed method, in Section 3 we present the experimental analysis and finally,
in Section 4, we conclude the paper.

Notations. Vectors (a) and matrices (A) are denoted by bold letters. An u ∈ Rd

vector’s Euclidean norm is ‖u‖2 =
√∑d

i=1 u
2
i . B = [A1; . . . ; AK ] ∈ R(d1+...+dK)×N

denotes the concatenation of matrices Ak ∈ Rdk×N .

2 Continuous Supervised Descent Method

2.1 Second order regressor

The original SDM method [9] is an exemplar-based method which learns a series
of linear regressors approximating the data to the global optima in a cascaded
manner. Lets consider Xi ∈ Rn×m the m targets for each of n samples at a
given cascade step i, ∆Φi ∈ Rn×(k+1) = Φi − Φi the difference of the feature
vectors of length k from the mean, with a column vector of ones added in order
to account for the bias, and Ri ∈ R(k+1)×m the linear regressor for each of the
m parameters. Then the update formula for SDM can be expressed as follows:

Xi+1 = Xi + (Φi −Φi)Ri = Xi +∆ΦiRi (3)

This can be seen as learning a linear approximation of the first-order partial
derivatives for each parameter. These correspond to ∂∆Xi+1/∂∆Φi

j = ∆Φi
jR

i
j ,

with Ri being the Jacobian matrix, ∆Φi
j the jth column of ∆Φi and Ri

j the jth

row of Ri. To make this approximation, the slope is considered homogeneous for
any point of the feature space. This assumption does not hold for most problems,
where the gradient direction suffers from large variations on different locations
of that space. On Global SDM [10] these variations are handled by partitioning
the space into different regions and learning a linear regressor for each one.
This approach can approximate with high accuracy the gradient variations at
different regions of the space, but has the problem of doubling the amount of
learnt regressors and required training data each time the space is divided.

Here we introduce a continuous formulation, where a set of bases are learnt for
the regressors, effectively learning a linear approximation of the second deriva-
tive. To do so, first a set of main modes of variation are learnt from either ∆X∗

or ∆Φi using Principal Component Analysis (PCA):



Continuous Supervised Descent Method for Facial Landmark Localisation 5

∆Φ̃i =
[
∆ΦiP1:l,1n

]
, (4)

Where l represents the number of bases to learn and P1:l is the projection
matrix. 1n ∈ Rn×1 denotes an all-ones vector. Given that the total number of
learnable parameters for one of m targets equals p = (k + 1)(l + 1), learning
the second derivative for all parameters (l = k) would drastically increase the
problem dimensionality. Estimating the second derivative on the l main variation
modes is a more treatable problem. Given one of the targets ∆Xi

j ∈ Rn×1, its
associated second order regressor is expressed as the solution to the following
minimisation problem:

arg min
Ri

j

||(∆Φi ◦ (∆Φ̃iRi
j))1(k+1) −∆Xi

j ||22 (5)

Here, Ri
j ∈ R(l+1)×(k+1) is the set of l bases (and baseline or bias regres-

sor) describing the regressor for the jth target at the ith cascade step, and ◦
denotes the Hadamard product. Note that, according to Equation 7, this for-
mulation learns a linear approximation to the second order partial derivatives
∂2∆Xi+1

j /(∂∆Φi
p ∂∆Φ̃i

q) = ∆Φi
p∆Φ̃i

q(R
i
j)pq. Thus Ri

j corresponds to a com-
pact version of the Hessian matrix for target j at cascade step i, having the
dimensionality of the feature space reduced before applying the second deriva-
tive. Equation 5 can be seen as a compact formulation defining a quadratic
regressor for each target, which is known to be a linear problem, having a closed
form solution. This minimisation problem can be expressed in a least squares
form, providing a closed form solution, as follows:

arg min
Ri

j

||(∆Φ̃i �∆Φi)vec(Ri
j

ᵀ
)−∆Xi

j ||22 (6)

Here � denotes the Khatri–Rao product, considering each instance (row) on

∆Φi and ∆Φ̃i as a partition of the matrix, and vec(Ri
j
ᵀ
) ∈ R(kl+2)×1 is the

vectorisation of the regressor bases. Thus, while the second derivative estimate
is used for a subset of principal components, the regressor remains linear. This
allows us to rapidly and directly find the optimal regression weights given the
training instances. Note that this formulation could be extended to estimate
higher order derivatives by applying the Khatri–Rao product multiple times. At
test time, the parameters are updated with the following equation:

Xi+1
j = Xi

j + (∆Φi ◦ (∆Φ̃iRi
j))1(k+1) (7)

This formula estimates the regressor weights and bias for the current value of

the principal components Φ̃i, and applies it to the features. This is more memory-
efficient than performing the Khatri-Rao product of ∆Φi and ∆Φ̃i and then
performing a linear regression. The bias for the regressor bases is the baseline
regressor for an instance with the mean value for the l principal components
(PCs) of the feature vector. Each of the l regression bases in Ri corresponds to
the second derivative estimate wrt. a given PC. Note that when l = 0 the model
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is a standard linear regressor. Thus, SDM can be seen as a special case of our
method where the second derivative is not taken into account for any PC.

The proposed approach estimates a standard linear regressor for each in-
stance given the coordinates of the features sub-space ∆Φ̃i. Global SDM as-
signs the same one to all instances falling into a given region of the parti-
tioned sub-space. Another advantage of this approach is that the number of
parameters learnt p at each cascade step increases linearly with the number
of bases (p = (k + 1)(l + 1)). With Global SDM it increases quadratically
(p = (k + 1)min(1, l2)). These two factors make the proposed approach both
more compact in terms of memory and more accurate, as shown in Section 3.3.
Because the regression space is continuous, the weights of the linear regressor
are adapted to each instance, providing more flexibility to the model. During
training, this also implies that for the proposed approach all the training data
is available for each base of the sub-space, helping to reduce over-fitting. GDSM
distributes the data between quadrants, logarithmically reducing the available
training data for each quadrant with the number of sub-space bases.

2.2 Implementation details

As discussed in Section 2.1, the second derivative of the feature space is calcu-
lated over the l principal components. For this work, similarly to [9], a simplified
SIFT descriptor is extracted from each landmark estimate. The descriptor has
a fixed 32× 32 window around the landmark, rotated according to the in-plane
rotation of the current geometry relative to the mean facial shape. PCA is then
applied in order to reduce its dimensionality. Thus, the feature vector for an
instance j at the cascade step i is defined as Φi

j = sift(Ij ,X
i
j)

ᵀPi
1:k, the k prin-

cipal components of the extracted SIFT descriptors. This implicitly provides

the l parameters for the regressor bases, being Φ̃i
j = (Φi

j)1:l. The targets ∆Xi

are rotated in the same way as the descriptor windows in order to maintain a
coherent update direction.

The feature vector length k and number of regression bases l may depend on
the problem and are free parameters of the model. Still, there are two consid-
erations to take into account. In a cascaded regression approach, the first steps
of the cascade broadly approximate the face pose and general shape, while later
steps tend to fine-tune the location of each landmark, working more locally. This
implies that at the fist steps a smaller amount of the total descriptors variance
may be enough. Conversely, a higher amount of regression bases would increase
the adaptability to the descriptors main modes of variation, which are expected
to be caused by pose/illumination variations. The feature vector length k is de-
fined as a fixed percentage of the original SIFT features variance. While it may
be possible to adjust the number of bases l at each cascade step (for instance
with forward selection), in this work a global value is chosen for all cascade steps.

The initial shape at the first cascade step is the mean shape. It is calculated
from the training instances ground truth shapes using Generalised Procrustes
Analysis.
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3 Experiments

This section is dedicated to the description and discussion of the experiments
conducted to validate the proposed method. We begin in Section 3.1 by describ-
ing the two datasets we used, 300W a dataset intensely used by the community
and BU4DFE-S, a dataset we have specially synthesised from BU4DFE, a 3D
face dataset. In Section 3.2 we present the experimental setup and the methods
used for comparison 1. In Section 3.3 we discuss the results.

The objective of these experiments are two-fold. First we want to show that
the proposed method achieves state-of-the-art results on close-to-frontal faces.
For this purpose we use 300W, a well known public dataset which is the de-facto
standard benchmarking dataset for facial landmark localisation. We then want
to show that the method outperforms other methods when applied to heavily
rotated faces. For this purpose we show results on the BU4DFE-S, a dataset
specially synthesised for this purpose. The reader is referred to Table 1 for the
overall results on the two considered datasets and to Figure3 for a comparative
study of the robustness to rotation 3. Detection examples are presented in Figure
4. The code for the experiments is made publicly available.

3.1 Data

In order to test the proposed method we used 300W, a well known facial ex-
pression dataset. We also designed a new dataset, which we called BU4DFE-S,
consisting of 2D faces synthesised from BU4DFE, a public 3D dynamic facial
expression dataset.

300W. The 300 Faces In-the-Wild (300W) [17] database is a compilation of
six re-annotated datasets (68 landmarks). Following the same approach as in [8]
[15], four of the six datasets are used: AFW [18], LFPW [19], Helen [20] and
iBUG [17]. The test data for LFPW and Helen, along with iBug, are used as
test. The rest of data is used for training. This provides a total of 3148 and
689 train and test instances. The data is captured outside the lab and it has
balanced ethnic and gender distribution. While challenging and diverse, it does
not contain far-from-frontal faces and its number of samples is rather low.

BU4DFE-S: While annotated face datasets have become more challenging
and diverse in recent years, they still provide a low number of training instances
with limited variation in rotation. In order to compare the robustness of the
proposed method with state-of-the-art facial landmark localisation methods, we
have created BU4DFE-S, a new large 2D dataset synthesised from the publicly
available BU4DFE. BU4DFE is a high resolution dynamic 3D facial dataset [21].
101 subjects of ages between 18 to 45 years old are captured while showing facial
expressions in a controlled environment. The 3D facial expressions are captured
at 25 frames per second. Each sequence begins with the neutral expression,
proceeds to target emotion and then back to neutral. For creating the BU4DFE-
S we sample 5 frames from each captured sequence. The sampled 3D frames

1 Code and data generation script available at https://github.com/moliusimon/csdm
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are equally distributed along the sequence, portraying varying intensities of the
same expression during onset, apex and offset.

We use the extracted 3D samples, to build 25 2D projections by rotating the
3D model in pitch and yaw. The projected images are generated as follows. The
BU4DFE provides the 3D point cloud of the face and an RGB image. Addi-
tionally for each of the 3D points the mapping is provided to the corresponding
position on the RGB image, making it possible to map the 3D geometry to the
colour texture. We first homogeneously down-sample the 3D points set by 20 and
build a triangle mesh from the remaining points. The down-sampling factor was
heuristically found as a trade-off between the computational cost for generating
the projected images and their quality. We consider an isometric projection to
associate texture patches to the mesh triangles. The mesh is then rotated with
the desired angle and the triangles are again projected to the 2D plane. The
new face is built by affine piece-wise warping of the initial texture patches to the
newly projections of the rotated triangles by taking into account self occlusions.
Inpainting is used to fill warping holes or artifacts. Finally, the images are re-
sized to a standard size of 200× 200 pixels and a background is painted on the
remaining regions.

We have used the test partition of the Places Dataset, a scene recognition
dataset, to build the backgrounds [22]. It contains 41000 images of size 256×256
pixels. From every image we crop two 200×200 regions, one on the top-let corner
and the other on the bottom-down corner. The former is flipped. We use these
images to place a different background behind each of the generated faces. In
Figure 1(a) we provide a summarised depiction of the process. The rotation
angles follow an inverse normal distribution for angles between ±90◦ in yaw
and ±45◦ in pitch as shown in Figure 1(b). In this way we obtain more highly
rotated faces in all directions than close-to-frontal faces. The generated data
contains a total of 75000 rotated images of 100 persons. Each person appears in
750 samples with 6 different facial expressions at 5 different intensities rotated
25 times. As the BU4DFE, the subjects are from different ethnicities and follow
a balanced gender distribution. The generated dataset has more instances and
rotation variation than any other existing public 2D dataset. We show some
examples in Figure 2.

Besides containing a larger number of samples (approximately 24 times more
than 300W), BU4DFE-S has two more important characteristics. First, for each
of the samples the pose is known which is not the case with most of the other
2D face datasets. There exist datasets containing captured faces under different
angles in the lab, but the angle distribution is extremely skewed [23]. Another
advantage of the BU4DFE-S is that we have total control over the pose distribu-
tion of the synthesised data. This makes possible benchmarking the robustness
to pose rotation against state-of-the-art methods as shown in Figure 3.

3.2 Experimental settings

For the proposed method the parameter space is larger than for SDM, specially
at the first cascade steps. In order to avoid over-fitting, the training data is aug-
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(a) Data synthesis for BU4DFE-S.
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(b) Pose rotation distribution for BU4DFE-S.

Fig. 1: BU4DFE-S contains 2D rotated faces synthesised from BU4DFE, a 3D
dynamic facial expression dataset. In (a) we show how from a original sequence
we sample a limited number of equally spaced frames. For each of these frames
we use the provided 3D mesh and the texture to generate 25 rotated projections.
The rotation angle distribution is shown in (b). We favour far-from-frontal faces
with respect to close-to-frontal ones in order to make the data as challenging as
possible.

mented. For both the 300W and BU4DFE-S datasets the images and geometries
are mirrored, doubling the number of training instances. In the case of 300W,
which consists of only 3148 training images, the dataset is further augmented by
providing 25 different initial geometries. These are generated by applying a ran-
dom rotation between [−π/4, π/4], a displacement between [−5%, 5%] for both
width and height, and a scaling factor between [0.9, 1.1] to the mean shape.

Regarding the number of bases l and the captured feature space variance,
the values have been manually chosen for each dataset. For 300W, 2 bases and
95% of variance are used, while for BU4DFE-S, 5 bases and 85% of variance are
used. It is necessary to use fewer bases in 300W in order to avoid over-fitting,
since the number of training instances is smaller.

We compare the proposed method with the most important facial landmark
localisation methods in recent years. This is done using the Normalised Mean
Euclidean Error (NMEE) metric, a standard error metric in the literature [9,
7]. It corresponds to the mean euclidean distance between the detected and
ground truth landmarks, normalised by the inter-ocular distance. In the case of
BU4DFE-S, where large head rotations are present, the 3D inter-ocular distance
is used instead. Otherwise for yaw angles close to 90◦ the inter-ocular distance
would tend to zero, giving more weight to errors on heavily rotated faces. For
comparing results we considered the most important state-of-the-art methods [6],
[7], [9], [10], [11], [8], [20], [14]. RCPR is able to deal with occlusions by including
occlusion ground-truth of the landmarks in the learning process. As none of the
considered datasets has annotated occlusions we discarded this feature during
training. For the ERT [11] and LBF [8], we compare with already published
results for the 300W. For a fair comparison we compare the results for the SDM
and the GSDM after training with the same number of steps as the proposed
method. It is important to note that GSDM is a method oriented to tracking
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Fig. 2: BU4DFE-S dataset samples. Annotated face landmarks are shown in
green.

the facial geometry, but can be easily applied to the static case by modifying the
definition of the subspace used to partition the feature space. Instead of using two
principal components from ∆Xi and one from ∆Φi, all principal components are
taken from ∆Φi. For the proposed approach, a 2-dimensional subspace is used in
the case of 300W, and a 5-dimensional one for BU4DFE-S. Finally, two recent
methods, CFSS [14] and CGPRT [15], have been considered. In their paper,
the authors of CGPRT publish two results, with different number of training
steps. The result we have obtained was with the larger number of steps and by
initialising with the mean shape. CFSS does a constraint search of the shape
in a coarse-to-fine manner in subsequent finer shape subspaces. Even though
a parallel training on the CPU was attempted, we found training to be very
slow, which made impossible obtaining results for BU4DFE-S with the available
hardware resources.

3.3 Results discussion

For the 300W dataset, the trained model has been fit to the test data both us-
ing mean shape initialisation and with 25 random initialisations sampled using
the same criteria used during training (see Section 3.2). The results of both ap-
proaches are shown in Table 1. Without multiple test initialisations, the method
has a NMEE lower than those achieved by ESR, RCPR, SDM and GSDM,
also surpassing ERT when using multiple initialisations. Yet LBF, CGPRT and
CFSS still have lower errors. Thus, the proposed approach surpasses, or is close,
to most state-of-the-art methods in the near frontal view conditions of the 300-w
dataset.

On BU4DFE-S the proposed method outperforms all considered state of the
art approaches. Because it is a dataset with large head pose rotations in both

2 For the BU4DFE-S we compute the interocular distance in 3D.
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ESR [6] RCPR [7] SDM [9] ERT [11] LBF [8] CGPRT [15] CFSS [14] GSDM [10] CSDM CSDMa

300W 7.58 8.38 7.52 6.40 6.32 5.71 5.76 6.96 6.83 6.40

BU4DFE-S 9.45 8.61 9.57 - - 15.81 - 9.01 8.28 7.62

Table 1: Our method compared with state-of-the-art methods in terms of mean
landmark displacement as percentage of interocular distance2 without (CSDM)
and with multiple test initialisations (CSDMa).

pitch and yaw, this dataset better represents the strength of the proposed al-
gorithm to better adjust to the main modes of variation of the data. This is
analysed in Figure 3. There, the NMEE is shown relative to the yaw rotation,
for two ranges of pitch. Without using multiple test initialisations, the proposed
method has an accuracy similar to that of the other state-of-the-art approaches
for near-frontal faces, but is much more robust to pose variations. It works spe-
cially well for both large pitch and yaw rotations. This contrasts with CGPRT,
which performed specially well for the 300W dataset, but had problems with
BU4DFE-S. The only method still far from, but approaching the accuracy ob-
tained by the proposed approach is RCPR. It can be seen in Figure 3 that while
RCPR has the lowest NMEE for frontal faces, it one of the best approaches
when dealing with large pose variations. When using multiple test initialisa-
tions, a much lower average error is obtained, achieving the same accuracy for
near-frontal faces as ERT. This accuracy improvement is maintained regardless
of the facial pose, except for large pose rotations in both pitch and yaw, where
the yaw angle is close to 90◦. For these extreme cases, the error is only slightly
lower than CSDM without using multiple shape initialisations.

A breakdown of the NMEE by facial regions, as shown in Table 2, gives a
better insight on the method performance. For far from frontal head poses, the
proposed approach surpasses the state of the art accuracies on all facial regions,
both with and without multiple test initialisations. In the case of near-frontal
head poses, RCPR has a higher precision for the eyes and eyebrows. CSDM is
better at localising landmarks at the nose, mouth and contour regions when using
multiple shape initialisations. An interesting result is the error reduction when
localising the contour landmarks with multiple shape initialisations. While the
other facial regions reduce the RMSE by about 5%, in the case of the contour
it is reduced by over 10%, both in close to and far from frontal head poses.
This is likely caused by the lack of edges and strong gradients on this region. By
averaging multiple predictions, the noise is reduced, obtaining a higher accuracy.

GSDM is another method that exploits the features main modes of variation
to better approximate the descent direction at different regions of the feature
space. Compared to it, the proposed method obtains better results for both
300W and BU4DFE-S while also producing a more compact model. The memory
required by GSDM increases quadratically with the number of considered bases,
while the proposed approach does so linearly. Furthermore, each position of
the subspace has a unique regressor assigned, while GSDM shares the same
regression weights for a given partition of the subspace. One downside to the
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Close to frontal Far from frontal

ESR RCPR SDM CGPRT GSDM CSDM CSDMa ESR RCPR SDM CGPRT GSDM CSDM CSDMa

eyes 3.92 3.38 4.02 10.53 3.92 4.04 3.82 6.94 6.11 6.76 14.29 6.25 5.55 5.20

eyebrows 5.84 5.17 5.60 13.15 5.56 5.84 5.54 9.01 8.02 8.50 17.73 8.12 7.20 6.77

nose 6.03 5.59 5.60 10.30 5.51 5.58 5.27 8.26 7.69 8.58 13.21 8.00 7.41 6.99

mouth 5.46 4.28 4.47 10.91 4.27 4.40 4.27 8.20 6.70 8.18 14.52 6.72 6.17 5.84

contour 12.59 12.11 13.26 17.49 13.52 13.27 12.04 17.30 17.19 18.54 22.43 18.53 17.20 15.27

Table 2: Normalised Mean Euclidean Error (NMEE) for different landmark sub-
sets corresponding to facial regions on BU4DFE-S. We group faces according
to their pose. Close-to-frontal faces have an yaw angle between ±30◦ and pitch
angle between ±15◦. Correspondingly far-from frontal faces have both yaw and
pitch angles above ±30◦ and ±15◦ respectively.

proposed approach is that the computational cost increases linearly with the
number of bases, while for GSDM the cost remains constant.

Similarly to SDM and GSDM, the proposed method provides a closed-form
solution. Compared to other state-of-the-art methods such as CFSS, CGPRT and
LBF, which use stochastic processes when learning each regressor, the proposed
approach ensures a consistent result on different training runs given the same
data.
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Fig. 3: Normalised Mean Euclidean Error (NMEE) as a function of yaw on two
different pitch ranges on BU4DFE-S.

Multiple qualitative examples of faces from the BU4DFE-S dataset, with the
landmark predictions for different methods, are shown in Figure 4. From these
examples it can be seen that SDM, CGPRT and RCPR struggle to correctly
locate inner face landmarks for heavily rotated faces. Compared to all other
considered methods, our proposal has a high accuracy on inner face landmarks
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even with highly rotated faces, followed by GSDM and ESR. The main weakness
is the localisation of face contour landmarks, which is noisy due to the lack of
edges and little texture information on that area, resulting in a lack of smooth-
ness in the contour line. Even with this noise, as shown in Table 2, the proposed
approach has a much better precision for this set of landmarks. An extension to
consider in the future would be regressing a parametrised shape, which should
increase the accuracy for the face contours.

4 Conclusion

In this work we extended cascaded regression approaches by introducing the sec-
ond order derivative over the main modes of variation of the features, presenting
a closed-form solution to the face alignment problem. We showed that by doing
so, the robustness to large head pose variations is greatly increased, surpassing
current state of the art methods. At the same time, the accuracy for near-frontal
faces is comparable to state of the art results. Furthermore, the learnt models
are smaller than those from other similar approaches.

In order to prove the effectiveness of our method on heavily rotated faces
we have built a new synthetic dataset based on a well known public 3D face
dataset. It contains large variations in both head pose and facial expressions, as
well as a large number of training instances, making it one of the largest, most
challenging datasets for facial landmark localisation to date.

Several future improvements can be envisioned, like parameterizing the face
to increase shape consistency especially for landmarks situated in regions with
little texture and extending the method to 3D, which would make it useful for
a larger number of applications.
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