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Abstract. There is a growing interest in behavior based biometrics. Al-
though biometric data has considerable variations for an individual and
may be faked, yet the combination of such ‘weak experts’ can be rather
strong. A remotely detectable component is gaze direction estimation
and thus, eye movement patterns. Here, we present a novel personal-
ization method for gaze estimation systems, which does not require a
precise calibration setup, can be non-obtrusive, is fast and easy to use.
We show that it improves the precision of gaze direction estimation al-
gorithms considerably. The method is convenient; we exploit 3D face
model reconstruction for the enrichment of a small number of collected
data artificially.

1 Introduction

With the advance of facial expression recognition and animation technologies
(see, e.g., [8] and the references therein) biometric information is becoming more
and more ambiguous and imitable by computer graphics. Behavior based bio-
metric may serve us as a rescue. It was shown more than a decade ago that facial
expressions and head movements provide as relevant recognition cues as the face
itself [22]. From both practical and theoretical point of views, imitation of such
behavioral patterns will also be feasible in the near future, but – as argued many
years ago – the more behavioral information is available, the better the chances
are for the identification of anomalies and malicious episodes [18]. IoT and smart
tools provide novel means for such characterization. On the other hand, remote
identification of a person may not use IoT tools and only visible behavioral pat-
terns may serve us. Eye movement pattern is one of the suggested components
[1] and it may be used both in task oriented [2] and task independent settings
[12, 6, 17]. Precision of the measurement is critical.

Another application field is gaze-based control, e.g., for special needs, since
it may replace the need for wearable tools [24].

Here, we put forth a personalization method that can work with a small
number of labeled samples, since we increase the number of samples artificially:
we fit the mentioned 3D face model (i.e., [8]) to the image, rotate the model to



2

different head poses and increase our dataset with the 2D projections of the 3D
data. Otherwise, the method would be of limited use, as we discuss it later.

The paper is organized as follows. We review the related gaze direction esti-
mation works (Sect. 2) followed by the section on the databases and the estima-
tion methods. The methods include deep learning, supervised descent, Support
Vector Regression (SVR) that we use for the estimation of the facial mesh, po-
sitions of eye marker points, the head pose, and the gaze direction and we are
searching for a good combination (Sect. 3). Results can be found in Section 4.
Conclusions are drawn in the last section (Sect. 5).

2 Related Works

Gaze estimation systems are generally classified into two types: model-based and
appearance-based methods. Our work is concerned with the latter.

In recent years, numerous papers have been published on appearance-based
gaze estimation systems. Lu et al. [13, 14] described a method using Adaptive
Linear Regression (ALR). They manually designed a feature descriptor based
directly on normalized pixel intensities of the preprocessed eye region. They
estimate the gaze positions by finding the best subset of the training samples,
which linearly reconstructs the feature descriptor of the actual test sample. The
estimated gaze position is computed with a linear regression on the selected
subset.

Instead of regression, Smith et al. [20] solve a classification problem: they
classify images to detect “gaze locking” i.e. direct eye contact with the camera.
They also start from raw pixel intensities of a masked area on the image, but they
apply principal component analysis and multiple discriminant analysis to achieve
dimensionality reduction. Their classifier is a linear support vector machine.

Using the same dataset, Schneider et al. [19] compared various feature de-
scriptors such as Histogram of Oriented Gradients (HOG) [5], Local Binary Pat-
terns (LBP) [16] and raw pixel intensities in combination with different regres-
sion algorithms, such as k-Nearest-Neighbours and Support Vector Regression.
They report that a multi-level HOG with LBP features and SVR make the best
combination.

Sato et al. [23] presented a unique solution to enrich their training database
for gaze estimation. They created a setup with multiple 2D cameras and recon-
structed a 3D model of the subject’s face. Given this 3D model they synthesised
2D images from multiple views thus increasing the variation coverage of the head
pose. For regression, they used random forests on the image features combined
with the data on the 3D head poses.

To our best knowledge Zhang et al. [26] were the first to use convolutional
neural networks for gaze estimation. Alike Sato et al. [23], they also appended
the head pose to the convolutional feature descriptor. They achieved slightly
better results than Schneider et al. [19]. For more details, on this subject, the
interested reader is referred to the paper of Zhang et al. [26].
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3 Databases and Methods

3.1 Databases

Several datasets are publicly available for training gaze estimation systems, in-
cluding the EYEDIAP [15], the MPIIGaze [26] and the UT Multi-view [23] sets.
Among these, the full face is visible only in the EYEDIAP dataset. Since we
extend our training dataset by fitting a 3D model of the head to images and
we want to rotate the heads, our method requires the whole face. We used two
datasets in our studies; the dataset from Columbia and our own dataset.

The ‘Columbia Gaze Data Set’ (CGDS) [20] consists of 5880 images from 56
subjects. The head of each subject was stabilized with a chin rest. The authors
used multiple, carefully aligned cameras and gaze targets to record various head
poses and gaze directions. The resolution of the images is high: they use 5184×
3456 pixels. A sample image is shown in Fig. 1(a).

Our dataset (ELTE dataset) consists of recorded videos of 19 subjects (4
females and 15 males) taken in more realistic scenarios. Subjects were instructed
to gaze directly into the camera and rotate their heads in different directions
while keeping their gaze locked at the camera. We used a HD webcam, uniform
lighting conditions, and a white canvas as background during data collection
(Fig. 1(a)).

(a) (b)

Fig. 1. (a) Datasets. Top: chins are stabilized and subjects look at predefined gaze
targets [20]. Bottom: gazes are locked at the camera and head poses are changed. (b)
Gaze estimation pipeline. Solid lines: used in all cases, dotted lines: used in some of
the experiments. Marker positions are used for image normalization (not shown).

3.2 Methods

In our gaze estimation pipeline presented on Fig. 1(b) we use non-linear regres-
sions at multiple stages that we review below.
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As the first step of our pipeline, we estimate a bounding box around the
face. The method we used is a linear support vector machine on Histogram of
Oriented Gradients (HOG) features, similar to [5]. We used the open source
implementation together with the available trained model from the dlib library
[10]. Once the face has been detected, we estimate 2D facial landmarks from a
small subset of pixel intensities, using a cascade of random forests [9].

The visual features used for gaze estimation were extended with the 3D
head pose data. We used 49 pieces of 2D facial markers as the inputs to the
Supervised Descent Method (SDM) [25] and estimated the head pose as follows:
we constructed a 3D mean shape, rotated it, and successively minimized the
angular error using the 2D reprojection error.

The position of the pupil center was also estimated and served as an optional
additional feature. We used the facial marker positions of the SDM regressor,
normalized our training images by converting them to grayscale, scaling them
to a predefined intercanthal distance (ICD) and by rotating them in 2D to hori-
zontal intercanthal direction. We also flipped each training image horizontally to
increase the variance of our training data. The initial estimation was the centroid
of the eye corners. We used HOG features with 9 signed bins.

The last step in our pipeline is the gaze estimation. We compared two vari-
ants: a Support Vector Regressor-based estimator (SVR) with HOG features as
a baseline and a convolutional neural network (CNN) as the state-of-the-art. In
both cases, we tried if additional features can improve the quality of the estima-
tion, such as (i) the 3D head pose and (ii) the position of the 2D eye and pupil
markers. In both cases, images were scaled to a predefined ICD.

We used both LIBLINEAR [7] and the LIBSVM [3] libraries for SVR esti-
mations, both of which are publicly available. Details of these well-performing
algorithms are well described in the literature [4].

We implemented a convolutional neural network similar to [26] in Lasagne.
There are two main differences between the original implementation and ours:
(i) we use dropout [21] and (ii) rectified linear units in all layers except for the
output. Image patches were cut for both eyes with the centroid of the eye corners
at the center. Adamax [11] and early stopping were used for network training.

Our architecture was composed of two convolutional and max pooling layer
pairs, and 2 dense layers. The first four layers had 2×2 filters, except for the first
convolutional one, which had 3 × 3. The optional head pose and pupil position
were concatenated to the convolutional features. We used 1024 units in both
fully connected layers. The dropout probability was 10% for the last pooling
layer and for the first dense layer.

Beyond our pipeline, we included the ZFace tool [8], an SDM application.
ZFace starts with an SDM based generic tracker that locates the 2D and 3D
coordinates of main fiducial landmarks in each image. It then reconstructs a high
resolution 3D mesh of 512 points. We generated new, realistic 2D projections of
the face by mapping the texture to the 3D mesh and rotating it. Although
ZFace could be used in the gaze estimation pipeline, due to time considerations,
we inserted the cascade of random forests into that.
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3.3 Personalization

The personalization method requires only a handful of images, yet it may de-
crease gaze estimation error by more than 40%. Our algorithm works as follows.

Fig. 2. Personalization pipeline on a CGDS image: input → reconstruct the 3D mesh
→ generate new training samples by rotating it.

1. Get ‘personalization images’ of the subject with known gaze vectors and
various head positions, e.g., when both components of the gaze vector is 0,
i.e. the subject is looking directly into the camera.

2. Fit a 3D mesh to each personalization image. We used ZFace [8] in this step.
3. Rotate the estimated 3D meshes in random directions and generate 2D pro-

jections. Calculate the gaze vectors in accordance with these rotations.
4. Improve the gaze estimation model with the generated 2D projections.

The method is sketched in Fig. 2. We explored different algorithmic combinations
to be detailed in the following section (Sect. 4).

4 Results

We studied the performance of three algorithms, namely, LIBLINEAR, LIBSVM
and CNN in the absence of personalization. We evaluated these algorithms on our
own database and on the CGDS database. After reconstructing the 3D meshes
on both of them, we first rotated them back to a frontal view, then we rotated
them with angles drawn randomly from the uniform distributions in the ranges
[−30◦, 30◦] and [−15◦, 15◦] for the yaw and pitch angles, respectively. We evalu-
ated the gaze algorithms with leave-one-subject-out cross-validation. LIBSVM is
somewhat better than LIBLINEAR, but in some cases we used the latter as our
baseline due to computer time requirements; scaling characteristics of LIBSVM
can be prohibitive for large sample sizes. In LIBLINEAR we used the solver for
the dual problem and also employed a bias term. Results are shown in Table 1.

We evaluated the performance of the personalization pipeline for different
algorithms and ICDs. We extended the visual features both with the head pose,
the eye and pupil marker positions in all cases. Images used for personalization
were randomly selected from the samples of each subject. The images were pre-
processed the same way as in the evaluation of gaze estimation algorithms. We
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Additional ELTE LSVM ELTE LLIN ELTE CNN CGDS CNN
features 32 96 32 96 32 96 32 96

None 6.89 7.11 6.69 7.06 5.98 5.06 10.37 8.62

Pupil 4.88 7.69 5.20 5.36 5.64 5.07 10.11 8.53

Head pose 6.17 6.35 6.05 6.06 3.92 3.85 8.07 6.97

Pupil + h.pose 3.78 7.96 5.07 5.27 3.82 3.86 8.28 7.12
Table 1. Comparisons of performances for the two databases ELTE and CGDS [20]
and for the three algorithms LIBSVM (LSVM), LIBLINEAR (LLIN), and CNN. 32
and 96 in the table header denote the ICD we used for scaling. The table shows mean
angular errors in degrees.

Pers. ELTE ELTE ELTE CNN 32 ICD ELTE CNN 96 ICD CGDS CNN 96 ICD
images LSVM LLIN (a) (b) (a) (b) (a) (b)

0 3.78 5.07 3.82 3.83 3.86 3.89 7.12 7.09

5 2.81 3.71 2.91 3.06 2.45 3.29 6.13 6.47

10 2.56 3.45 2.61 2.75 2.24 3.24 5.59 6.27

15 2.36 3.13 2.34 2.26 2.02 2.28 4.98 5.33

20 2.22 3.08 2.21 2.04 1.80 1.93 4.61 4.59
Table 2. Comparisons of personalization performances for the two databases ELTE
and CGDS [20], for the the three algorithms LIBSVM (LSVM), LIBLINEAR (LLIN),
CNN, and for different number of personalization images. All runs had both pupil
and head pose data as inputs. For each personalization image 10 rotated samples were
generated. Notation: augmented database is (a): trained from scratch, (b): added as a
single mini batch at the end of training. The displayed values are mean angular errors
in degrees.

show our results on Table 2. By using the personalization pipeline, performace
increases gradually. For 20 personalization images rotated to 10 different head
poses, the mean gaze error fell down to less than two third of its original value
(from 100% to 58%) on the average.

5 Summary

We have presented a non-obtrusive method together with a learning architecture
for gaze direction estimation in a considerable range of head pose angles. Such
estimations have a number of applications from the medical field, to remote
surveillance systems and also computer assisted education. The special feature of
our method is the personalization capability that does not require a complicated
calibration setup, yet improves precision considerably.
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In: Image analysis, pp. 780–789. Springer (2005)

2. Cantoni, V., Galdi, C., Nappi, M., Porta, M., Riccio, D.: Gant: Gaze analysis
technique for human identification. Pattern Recognition 48(4), 1027–1038 (2015)

3. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on. vol. 1, pp. 886–893. IEEE (2005)

6. Eberz, S., Rasmussen, K.B., Lenders, V., Martinovic, I.: Preventing lunchtime
attacks: Fighting insider threats with eye movement biometrics. In: NDSS (2015)

7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for
large linear classification. The Journal of Machine Learning Research 9, 1871–1874
(2008)

8. Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3d face alignment from 2d videos in
real-time. In: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE
International Conference and Workshops on. vol. 1, pp. 1–8. IEEE (2015)

9. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of re-
gression trees. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1867–1874 (2014)

10. King, D.E.: Dlib-ml: A machine learning toolkit. The Journal of Machine Learning
Research 10, 1755–1758 (2009)

11. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Kinnunen, T., Sedlak, F., Bednarik, R.: Towards task-independent person authen-
tication using eye movement signals. In: Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications. pp. 187–190. ACM (2010)

13. Lu, F., Sugano, Y., Okabe, T., Sato, Y.: Inferring human gaze from appearance via
adaptive linear regression. In: Computer Vision (ICCV), 2011 IEEE International
Conference on. pp. 153–160. IEEE (2011)

14. Lu, F., Sugano, Y., Okabe, T., Sato, Y.: Adaptive linear regression for appearance-
based gaze estimation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 36(10), 2033–2046 (2014)

15. Mora, K.A.F., Monay, F., Odobez, J.M.: Eyediap: A database for the development
and evaluation of gaze estimation algorithms from rgb and rgb-d cameras. In:
Proceedings of the Symposium on Eye Tracking Research and Applications. pp.
255–258. ACM (2014)

16. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture mea-
sures with classification based on kullback discrimination of distributions. In: Pat-
tern Recognition, 1994. Vol. 1-Conference A: Computer Vision &amp; Image Pro-
cessing., Proceedings of the 12th IAPR International Conference on. vol. 1, pp.
582–585. IEEE (1994)

17. Rigas, I., Komogortsev, O., Shadmehr, R.: Biometric recognition via eye move-
ments: Saccadic vigor and acceleration cues. ACM Transactions on Applied Per-
ception (TAP) 13(2), 6 (2016)



8

18. Ross, A., Jain, A.: Information fusion in biometrics. Pattern recognition letters
24(13), 2115–2125 (2003)

19. Schneider, T., Schauerte, B., Stiefelhagen, R.: Manifold alignment for person inde-
pendent appearance-based gaze estimation. In: 2014 22nd International Conference
on Pattern Recognition (ICPR). pp. 1167–1172. IEEE (2014)

20. Smith, B.A., Yin, Q., Feiner, S.K., Nayar, S.K.: Gaze locking: passive eye contact
detection for human-object interaction. In: Proceedings of the 26th annual ACM
symposium on User interface software and technology. pp. 271–280. ACM (2013)

21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research 15(1), 1929–1958 (2014)

22. Stone, J.: Face recognition: When a nod is better than a wink. Current Biology
11(16), R663–R664 (2001)

23. Sugano, Y., Matsushita, Y., Sato, Y.: Learning-by-synthesis for appearance-based
3d gaze estimation. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 1821–1828 (2014)
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